
Server Specification of the Virtual Soccer
Competition [Preliminary]

This is a preliminary document describing the server infrastructure of the virtual
RoboCup Humanoid League soccer competition. The next major update is
planned for April 19th. In case you feel that your team requires elements to run
the robot controller which are not described in or in conflict with this document,
please contact the TC as soon as possible and we will examine your request.
Details on where exactly the tournament will be hosted are still under exploration
and details are expected in the next major update.

Computing
Each robot has its own, dedicated Linux VM ("robot VM"). The robot VMs will
have the following processing power:

• CPU: 4 vCPU based on Intel Cascade Lake CPUs or above
• GPU: NVIDIA T4 or above

Inside each robot VM a Docker image with the robot control software for exactly
one robot is running. There will be other processes running on the robot VM
besides the ones in the Docker container but the footprint of these processes
should be negligible.

Docker Images
Teams are expected to provide Docker images for their robot control software. It is
possible to configure a different Docker image for each robot in the config.json.
The arguments passed when running a Docker image (the CMD) can be configured
via the config.json. Furthermore, there will be the following environment
variables available in the Docker containers:

• ROBOCUP_ROBOT_ID: The id of your robot as specified in the config.json.
Valid values are 1 - 4 (KidSize) or 1 - 2 (AdultSize).

• ROBOCUP_TEAM_COLOR: Your team color as announced in the game schedule.
It is equal to either red or blue.

1



Networking
The network consists of the following participants:

• Robot VMs: Each team has 4 (KidSize) or 2 (AdultSize) robot VMs.

• Simulator VM: – Webots: The simulator itself with 4 (KidSize) or
2 (AdultSize) robots per team.

– API server: Robot VMs access their virtual robots via the API
server.

– GameController: The GameController sends information
about the game state to the robot VMs.

– AutoRef: The AutoRef (Automatic Referee Service) replaces
the human referee and communicates its decision to the Game-
Controller.

Both the API server and the AutoRef are implemented as Webots supervisors.

Webots
with kid.wbt or adult.wbt

API Server

Game Controller

AutoRefRobot VM

Robot VM

Robot VM

Robot VM

Robot VM

Robot VM

Robot VM

Robot VM

Team A Team B

Figure 1: The network communication of the virtual soccer competition. Infor-
mation from the Webots simulator are only accessible via the API server. The
AutoRef only interacts with the GameController and has no direct communication
to the robot VMs.

The total bandwidth between all robot VMs from a single team and the simulator
API is limited to 50 MB/s and is evenly distributed among all robots playing.
For example, if a team from KidSize has provided a config.json with 4 robot
ids, each robot VM has a bandwidth of 12.5MB/s. The total bandwidth between
robot VMs (of the same team) is limited to 1MB/s. Robot VMs of opposing
teams are not allowed not communicate.

The Docker image is run using the host network (think of docker run
--network host). Thus all ports from within the Docker container will be
reachable from outside the robot VM.

For communication between robots, Multicast will not work. This is a limitation

2



of Docker, see [multicast1] and [multicast2]. We are currently investigating the
exact list of the different ways of communicating that will be allowed for teams.

Game Logs
After the video stream of a game is finished, the logs of that game are released.
Some logs are released publicly, some are only released to the respective teams.

Public logs:

• Recording of the game: The recording will be available both as a video
and as a custom format provided by Cyberbotics to generate a 3d-replay
version of the game.

• AutoRef logs: All decisions taken by the AutoReferee system.
• GameController logs: Internal log messages and updates sent to the

robot control instances.

Team-internal logs:

• Docker log: The output (stdout and stderr) of the robot control software
(think of docker logs).

• Custom log folder: We want to enable teams to record logs for debugging
purposes with a limit of 10 GB per robot VM. Thus, each Docker container
will have the folder /robocup-logs where you are able to write files into.
After a game is finished, the files of each of the robot’s custom log folder
are copied and you will get read-access to that copy. This folder is not
shared across the Docker containers (i.e., you are not able to communicate
via this folder with the other Docker containers. Each robot has their own
folder.). The folder is also not persistent across games, it will be initially
empty at the beginning of each game.

Public logs are released to the general public and they will remain accessible at
least until the end of the tournament. Team-internal logs will be made available
only to the respective team and teams will only receive access to the last three
games they played (so that the oldest is deleted when a new one comes in). Team
are asked to only download their internal log files once and then distribute it
internally among team members to keep downloads from our servers manageable.

We have yet to decide on how logs will be exactly be made accessible.

Storage
Each VM has a HDD or SSD storage with at least 10 GB of free storage. That
storage can be accessed via the Docker overlay filesystem (the main filesystem
mounted at / in the Docker container). The storage is not persistent across
games and is reset after each game.

3



Note that teams can not pre-populate the filesystem and are expected to store
all data they need (including assets such as weights for neural networks) in the
Docker image. The filesystem can be only used to store temporary files.

The custom log folder at /robocup-logs has an additional 10 GB of storage.
The read/write speed of the custom log folder may be slower than the main
storage (exact specifications will be released later).

Game Procedure
Prior to the competition, teams submit their config.json (the team configura-
tion file, see the API document [apidocument]) and PROTO files (the Webots
robot models) via the Humanoid League submission system.

During the competition, teams will be informed of the official streaming schedule
for each game. Note that the communicated schedule is the streaming time and
not when the actual simulated games are played. The simulated games will be
played in a two hour time frame before the game is streamed.

A game proceeds as follows:

1. Two hours before the official streaming schedule, the Docker images defined
in the config.json are pulled (they are pulled before each game so teams
can make fixes during the competition).

2. The simulation is started by the Technical Committee and the robot model
files are loaded into the simulator.

3. Each robot defined in the config.json is assigned a VM, and on each of
these robot VMs, the Docker image (which is already pulled) is run with
the command provided in the config.json.

4. The AutoRef waits at least two minutes between the start of the robot
VMs and the start of the match. The start of the match is defined by the
game state being set to READY for the first half time in accordance with
the laws of the game.

5. The GameController announces that the game has ended. The team’s
Docker containers get a time frame of two minutes for shutting down
gracefully before being killed (think of docker stop --time=120).

6. The game is streamed on Twitch to the public in accordance with the game
schedule.

7. After the game finished streaming, the game logs are released.

Also note that the actual duration of the game will depend on real-time factor
of the simulation.

If a team provides an invalid reference to a Docker image, the respective robot
model is still spawned in the game in accordance with the config.json. In case
at least one valid Docker image was provided, the game proceeds normally. If
no valid Docker image is provided, the game is counted as a forfeit.

4



References
apidocument API Specifications for Virtual Soccer Competition, https://cdn.

robocup.org/hl/wp/2021/04/v-hsc_simulator_api_draft2.pdf

multicast1 Cannot receive external multicast inside container, https://github.
com/moby/moby/issues/23659

multicast2 Multicast in Overlay driver, https://github.com/moby/libnetwork/
issues/552

5

https://cdn.robocup.org/hl/wp/2021/04/v-hsc_simulator_api_draft2.pdf
https://cdn.robocup.org/hl/wp/2021/04/v-hsc_simulator_api_draft2.pdf
https://github.com/moby/moby/issues/23659
https://github.com/moby/moby/issues/23659
https://github.com/moby/libnetwork/issues/552
https://github.com/moby/libnetwork/issues/552

	Computing
	Docker Images
	Networking
	Game Logs
	Storage
	Game Procedure
	References

