API Specifications for Virtual Soccer Competition [Preliminary]

This is a preliminary document, next major update will be published on April 19th. Expected adjustments for the next
version are potential changes to the bandwidth and update frequency to match the performances of the chosen server.
In case you feel that your team requires support for elements which are not described in this document, contact the
TC as soon as possible and we will examine your request.

This document describes how to interface the source code of the teams with the simulator for the competition. More
precisely, it focuses on:

o the definition of a configuration file provided by team to provide instructions to the simulator
e the protocol used to enable communication between the program controlling the robots and the simulator

In the following, we use the terms:

e robot or robot model to refer to the virtual robot acting and sensing within the simulated environment and
e robot control software to refer to the robot behavior software implemented by teams which runs outside the
simulator environment

General aspects

Control of the robots during the game is performed through asynchronous communication based on a custom TCP
protocol between the simulator and the robot control software.

The protocol will be based on proto3 messages. The current protobuf file can be seen on the Webots github.

After each step of the physical simulation, the simulator sends a message with all the new data available from the
sensors.

The minimal step between two sensors update is chosen as follows:

o Camera Data: minimal time between two consecutive frame is noted minFrameStep and is 16ms
¢ Other sensors: minimal time between two updates is noted minControlStep and will be 4ms or 8ms depending
on the physical timestep that will be used for simulation.

ROS and ROS2 Bridge

A simple package allowing to make the bridge between the TCP protocol and ROS or ROS2 topics will be provided.
It should be executed as part of the robot control software. As a consequence, using those bridges will add a small
delay in processing.

Configuration file

The simulator requires a configuration file per team written in JSON format, an example of such a configuration file
is provided in the appendix. The configuration file contains a dictionary with two entries:

e name: string The team tag, limited to 12 characters
e players: dictionary of Players The list of players with their properties

The players entry has the ID of the robot as key and the following properties as values:

e robotModelName: string The name to the model that should be used for this robot. This needs to match the
file name submitted in the submission system of the Humanoid League

e dockerImg: string The docker image containing the control software for this robot

e dockerCmd: string The CMD used to launch the dockerImg

e halfTimeStartingPose: Pose Robot pose at the beginning of a half time.

e reentryStartingPose: Pose Robot pose after a removal penalty.

e shootoutStartingPose: Pose Robot pose at penalty shootouts.

A team can choose to start the game with less robots than the maximum allowed in their league by providing less
entries to the players dictionary. However this cannot be changed during the game. For example, if a team decides
to play with only 1 robot and this robot receives a red card, it has to finish the game with no robots on the field.

The Pose objects define the transform used to place a robot, see documentation:

https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/cyberbotics/webots/blob/feature-robocup-controllers/projects/samples/contests/robocup/controllers/player/messages.proto
https://cyberbotics.com/doc/reference/transform

o translation: float[3] The [r,y,z] coordinate at which the robot has to be spawned.
o rotation: float[4] [rz,ry,rz,angle] with [rx,ry,rz] a normalized vector and angle the the rotation angle in
radians

Pose is defined in the following referential:

e Origin is the center of the field at ground level
o X axis points toward the center of the opponent’s goal
e 7 axis points toward the sky, orthogonal to the ground

The reentryStartingPose should be specified with a negative value for y and the robot facing the penalty mark
entirely outside of the field. Alternative poses will automatically be adjusted using a mirror symmetry along the XZ
plane or offsets along x axis.

Teams are requested to make sure that their initial position is compatible with the rules, otherwise they will risk to
commit repeatedly the following offence: entering the field without the referee’s permission which leads to a red card
in case it is repeated twice.

Protocol
Opening the connection to the simulator

To start the communication with the simulator, the robot control software will have to connect on the address
defined with the environment variable ROBOCUP_SIMULATOR_ADDR (e.g. 192.168.1.100:10001). The port defaults
to:

e« 10000 + ROBOT_ID for red team
e 10020 + ROBOT_ID for blue team

The simulator will be informed of the IP address of each robot. Therefore, any connection attempts on another
robots will fail. Moreover, all connection attempts are logged during the game. In case systematic attempts are
logged to connect to a robot from another team, the team performing the illegal connects will be sanctioned.

In case a robot is disconnected during the game, it should be able to reconnect on the same port.

Closing communication

In case a client is not responding anymore or is not treating messages quickly enough, which leads to filling a
communication queue on the simulator, the simulator should interrupt the connection with the client in order to
maintain the quality of service for other clients and keep the simulation at a reasonable speed. Such an interruption
will be noted in the logs of the simulator.

The connection will automatically be closed at the end of the game and the robot controller software will be informed
of the current state of the game by the GameController messages.

Sensor messages
The robot will receive regularly SensorMeasurements messages containing the following information:

o time : double timestamp at which the measurements were performed in [s]
» message : Message[]
— message__type: MessageType Error or Warning
— text: string textual description
e accelerometer : AccelerometerMeasurement []
— name : string
— value : double[3] /m/s"2], z-axis, y-axis, z-axis
e bumper : BumperMeasurement []
— name : string
— value : boolean
e camera : CameraMeasurement []
— name : string
— width : int

— height : int
— quality : int -1 = raw image, 100 = no compression, 0 = high compression. Currently, compression is
not implemented.
— image : char[] Raw RGB data if quality<0, otherwise JPEG encoded data
e force : ForceMeasurement []
— name : string
— value : double [N/
o force3d : Force3DMeasurement []
— name : string
— value : double[3] [N/, z-axis, y-axis, z-axis
e gyro : GyroMeasurement []
— name : string
— value : double[3] [rad/s/, x-axis, y-axis, z-axis
e position_sensor : PositionSensorMeasurement []
— name : string
— value : double [rad] or [m]

Each team is limited to 50 MB/s. The bandwith is equally distributed between the N robots defined in the
configuration file of the team. Hence, each robot control software has an individual bandwidth of 50/N MB/s. In
case a robot exceeds its budget (on a 1 second based history), packets will be discarded.

Acting messages
Each robot send a single message with a list of commands of the following types:

e motor_positions : MotorPosition[]
— name : string
— position : double [/m/ or [rad]
e motor_velocity : MotorVelocity[]
— name : string
— velocity : double [m/s] or [rad/s]
e motor_ force : MotorForcel]
— name : string
— force : double [N/
e motor_torque : MotorTorque []
— name : string
— torque : double [N.m]
e motor_pid : MotorPID[] see documentation
— name : string
— PID : double[3] [P,I,D] controller values
e sensor_time_ step : SensorTimeStep[]
— name : string
timeStep : int Time between two measurements in [ms], disable sensor if 0
— If request is lower than the minimal timestep for the sensor (but not 0), minimal timestep will be used.
NOTE: with respect to Camera sensors:

x The resolution of camera can’t be changed dynamically, however, it is possible to enable or disable
cameras at the same position during the game to change between a fixed number of resolutions.
Cameras positioned at the same location and orientation with the same field of view are not treated
as separate cameras according to the laws of the game.

o camera_ quality : CameraQuality[]
— name : string
— quality : int -1 = raw images, 100 = no compression, 0 = high compression. Currently compression is
not implemented.
e camera_ exposure : CameraExposure[]
— name : string
— exposure : float unit: [J/m"2]

https://cyberbotics.com/doc/reference/motor

Appendix

Example of json configuration

{
"name": "teamA",
"players": {
Il1||: {

"robotModelName": "robotA",
"dockerImg": "teamA_robotA",
"dockerCmd": "launchRobot.sh --goalie",
"halfTimeStartingPose": {
"translation": [-3.5, -3.06, 0.24],
"rotation": [0, O, 1, 1.57]
}’
"reentryStartingPose": {
"translation": [-3, -3.11, 0.24],
"rotation": [0.0, 0.707, 0.707, 3.14]
1,
"shootoutStartingPose": {
"translation": [2, 0, 0.24],
"rotation": [-0.57735, -0.57735, -0.57735, -2.0944]
}
3,
w2 {
"robotModelName": "robotA",
"dockerImg": "teamA_robotA",
"dockerCmd": "launchRobot.sh --fieldPlayer",
"halfTimeStartingPose": {
"translation": [-3.5, 3.06, 0.24],
"rotation": [0, O, 1, -1.57]
},
"reentryStartingPose": {
"translation": [-3, -3.11, 0.24],
"rotation": [0.0, 0.707, 0.707, 3.14]
1,
"shootoutStartingPose": {
"translation": [2, 0, 0.24],
"rotation": [-0.57735, -0.57735, -0.57735, -2.0944]
}
3,
"3 {
"robotModelName": "robotB",
"dockerImg": "teamA_robotB",
"dockerCmd": "launchRobot.sh --fieldPlayer",
"halfTimeStartingPose": {
"translation": [-0.75, -3.06, 0.24],
"rotation": [0, O, 1, 1.57]
1,
"reentryStartingPose": {
"translation": [-3, -3.11, 0.24],
"rotation": [0.0, 0.707, 0.707, 3.14]
},
"shootoutStartingPose": {
"translation": [2, 0, 0.24],
"rotation": [-0.57735, -0.57735, -0.57735, -2.0944]

3,
var: {
"robotModelName": "robotB",
"dockerImg": "teamA_robotB",
"dockerCmd": "launchRobot.sh --fieldPlayer",
"halfTimeStartingPose": {
"translation": [-0.75, 3.06, 0.24],
"rotation": [0, O, 1, -1.57]
1,
"reentryStartingPose": {
"translation": [-3, -3.11, 0.24],
"rotation": [0.0, 0.707, 0.707, 3.14]
1,
"shootoutStartingPose": {
"translation": [2, 0, 0.24],
"rotation": [-0.57735, -0.57735, -0.57735, -2

.0944]

	API Specifications for Virtual Soccer Competition [Preliminary]
	General aspects
	ROS and ROS2 Bridge

	Configuration file
	Protocol
	Opening the connection to the simulator
	Closing communication
	Sensor messages
	Acting messages

	Appendix
	Example of json configuration

