
API Specifications for Virtual Soccer Competition v1.01
This document describes how to interface the source code of the teams with the simulator for the competition. More
precisely, it focuses on:

• the definition of a configuration file provided by team to provide instructions to the simulator
• the protocol used to enable communication between the program controlling the robots and the simulator

From now on, this document will only be updated in cases of serious concern.

In the following, we use the terms:

• robot or robot model to refer to the virtual robot acting and sensing within the simulated environment and
• robot control software to refer to the robot behavior software implemented by teams which runs outside the

simulator environment

General aspects
Control of the robots during the game is performed through asynchronous communication based on a custom TCP
protocol between the simulator and the robot control software.

The protocol is based on proto3 messages. The current protobuf file can be seen on the Webots github.

After each step of the physical simulation, the simulator sends a message with all the new data available from the
sensors.

The minimal step between two sensors update is chosen as follows:

• Camera Data: minimal time between two consecutive frame is noted minFrameStep and is 16ms.
• Other sensors: minimal time between two updates is noted minControlStep and is 8ms.

The real-time duration of a 8ms simulation step might be longer than 8ms but it is guaranteed to last at least 8ms.

ROS and ROS2 Bridge

A simple package allowing to make the bridge between the TCP protocol and ROS or ROS2 topics is being developed.
If ready before the competition, it should be executed as part of the robot control software. As a consequence, using
those bridges will add a small delay in processing.

Configuration file
The simulator requires a configuration file per team written in JSON format, an example of such a configuration file
is provided in the appendix. The configuration file is called team_config.json and contains a dictionary with two
entries:

• name: string The team tag, limited to 12 characters
• players: dictionary of Players The list of players with their properties

The players entry has the ID of the robot as key and the following properties as values:

• proto: string The name to the model that should be used for this robot. The archive provided by the
teams. If the value of this field is RobotName, then the archive provided by the teams should include a file
named RobotName.proto which should contain a proto named RobotName (i.e. the file should start with PROTO
RobotName)

• dockerTag: string The Docker image tag containing the control software for this robot. This is optional and
defaults to “latest”.

• dockerCmd: string The command used to run the team’s Docker image. It will be run like this: docker run
<some Docker options set by us...> <dockerImg>:<dockerTag> <dockerCmd>. The idea of this prop-
erty is to enable teams to pass different commands based on which robot is used. This property is optional and
when this property is not set, the Docker image is run like this: docker run <some Docker options set by
us...> <dockerImg>:<dockerTag>.

• halfTimeStartingPose: Pose Robot pose at the beginning of a half time.
• reentryStartingPose: Pose Robot pose after a removal penalty.

1

https://developers.google.com/protocol-buffers/docs/proto3
https://github.com/cyberbotics/webots/blob/feature-robocup-controllers/projects/samples/contests/robocup/controllers/player/messages.proto


• shootoutStartingPose: Pose Robot pose at penalty shootouts.

A team can choose to start the game with less robots than the maximum allowed in their league by providing less
entries to the players dictionary. However this cannot be changed during the game. For example, if a team decides
to play with only 1 robot and this robot receives a red card, it has to finish the game with no robots on the field. A
team playing with n robots must use robot number 1 to n.

The Pose objects define the transform used to place a robot, see documentation:

• translation: float[3] The [x,y,z] coordinate at which the robot has to be spawned.
• rotation: float[4] [rx,ry,rz,angle] with [rx,ry,rz] a normalized vector and angle the the rotation angle in

radians.
– NOTE: while the definition allows to use any rotation axis, only rotations along the z-axis are supported

by the AutoReferee (e.g. 0 0 1 3.14).

Pose is defined in the following referential:

• Origin is the center of the field at ground level
• X axis points toward the center of the opponent’s goal
• Z axis points toward the sky, orthogonal to the ground

The reentryStartingPose should be specified with a negative value for y and the robot facing the penalty mark
entirely outside of the field. Alternative poses will automatically be adjusted using a mirror symmetry along the XZ
plane or offsets along x axis.

Teams are requested to make sure that their initial position is compatible with the rules, otherwise they will risk to
commit repeatedly the following offence: entering the field without the referee’s permission which leads to a red card
in case it is repeated twice.

Protocol
Opening the connection to the simulator

To start the communication with the simulator, the robot control software will have to connect on the address
defined with the environment variable ROBOCUP_SIMULATOR_ADDR (e.g. 192.168.1.100:10001). The port defaults
to:

• 10000 + ROBOT_ID for red team
• 10020 + ROBOT_ID for blue team

A time interval up to 1 minute and 30 seconds can elapse between the start of the robot control software and the
connection is accepted.

The simulator is informed of the IP address of each robot. Therefore, any connection attempts on another robots is
denied. Moreover, all connection attempts are logged during the game. In case systematic attempts are logged to
connect to a robot from another team, the team performing the illegal connects will be sanctioned.

When connecting to the simulator, the robot control software will receive a message of size 8 containing the following
string:

• Welcome: if the connection was accepted by the simulator.
• Refused: if the connection was denied.

In both cases, the message is ended by a null character \0.

In case a robot is disconnected during the game, it is allowed to reconnect on the same port.

Closing communication

In case a client is not responding anymore or is not treating messages quickly enough, which leads to filling a
communication queue on the simulator, the simulator interrupts the connection with the client in order to maintain
the quality of service for other clients and keep the simulation at a reasonable speed. Such an interruption is noted
in the logs of the simulator.

2

https://cyberbotics.com/doc/reference/transform


The connection is automatically closed at the end of the game and the robot control software is informed of the
current state of the game by the GameController messages.

Sensor messages

The robot control software will receive regularly SensorMeasurements messages from the simulator. Since the
duration of a simulation step is variable, the robot control software needs to be able to handle at least 15 seconds
without receiving messages from the Simulator.

The SensorMeasurements messages contain the following information:

• time : double timestamp at which the measurements were performed in [s]
• message : Message[]

– message_type: MessageType Error or Warning
– text: string textual description

• accelerometer : AccelerometerMeasurement[]
– name : string
– value : double[3] [m/sˆ2], x-axis, y-axis, z-axis

• bumper : BumperMeasurement[]
– name : string
– value : boolean

• camera : CameraMeasurement[]
– name : string
– width : int
– height : int
– quality : int UNUSED: only raw images are supported this year. -1 = raw image, 100 = no compression,
0 = high compression.

– image : char[] Raw BGR data if quality<0, otherwise JPEG encoded data
• force : ForceMeasurement[]

– name : string
– value : double [N]

• force3d : Force3DMeasurement[]
– name : string
– value : double[3] [N], x-axis, y-axis, z-axis

• gyro : GyroMeasurement[]
– name : string
– value : double[3] [rad/s], x-axis, y-axis, z-axis

• position_sensor : PositionSensorMeasurement[]
– name : string
– value : double [rad] or [m]

All the messages sent by the simulator are prefixed with the size of the message that follows. This size is stored on 4
bytes and can be read using ntohl(uint32_t).

Each team is limited to 350 MB/s. The bandwith is equally distributed between the N robots defined in the
configuration file of the team. Hence, each robot control software has an individual bandwidth of 350/N MB/s. In
case a robot exceeds its budget (on a 1 second based history), packets will be discarded.

Acting messages

Each robot is allowed to send a single message at each simulation step with a list of commands of the following types:

• motor_positions : MotorPosition[]
– name : string
– position : double [m] or [rad]

• motor_velocity : MotorVelocity[]
– name : string
– velocity : double [m/s] or [rad/s]

• motor_force : MotorForce[]
– name : string

3



– force : double [N]
• motor_torque : MotorTorque[]

– name : string
– torque : double [N.m]

• motor_pid : MotorPID[] see documentation
– name : string
– PID : double[3] [P,I,D] controller values

• sensor_time_step : SensorTimeStep[]
– name : string
– timeStep : int Time between two measurements in [ms], disable sensor if 0
– If request is lower than the minimal timestep for the sensor (but not 0), minimal timestep will be used.
– The requested timeStep should always be a multiple of minControlStep.
– NOTE: with respect to Camera sensors:

∗ The resolution of camera can’t be changed dynamically, however, it is possible to enable or disable
cameras at the same position during the game to change between a fixed number of resolutions.
Cameras positioned at the same location and orientation with the same field of view are not treated
as separate cameras according to the laws of the game.

• camera_quality : CameraQuality[] UNUSED: only raw images are supported this year.
– name : string
– quality : int -1 = raw images, 100 = no compression, 0 = high compression.

• camera_exposure : CameraExposure[]
– name : string
– exposure : float unit: [J/mˆ2]

All messages sent by the robot control software have to be prefixed with the size of the upcoming message stored on
4 bytes in the network byte order. It can be obtained using htonl(uint32_t).

Enabling and disabling sensors

Initially, all sensors are disabled. In order to receive data from the sensors, the robot control software has to explicitly
set the time step used to refresh the data, see sensor_time_step. It is not required to repeatedly set the timeStep
of the sensors to receive new data. Once the value is set, the data will automatically be sent to the robot control
software in the requested update frequency. Disabling a sensor that has been activated can be achieved by requesting
to set the timeStep to 0.

Appendix
Example of json configuration
{
"name": "teamA",
"players": {
"1": {
"proto": "robotA",
"dockerTag": "robotA",
"dockerCmd": "launchRobot.sh --goalkeeper",
"halfTimeStartingPose": {
"translation": [-3.5, -3.06, 0.24],
"rotation": [0, 0, 1, 1.57]

},
"reentryStartingPose": {
"translation": [-3, -3.11, 0.24],
"rotation": [0.0, 0, 1, 1.57]

},
"shootoutStartingPose": {
"translation": [2.6, 0, 0.24],
"rotation": [0, 0, 1, 0]

4

https://cyberbotics.com/doc/reference/motor


}
"goalKeeperStartingPose": {

"translation": [-4.47, 0, 0.24],
"rotation": [0, 0, 1, 0]

}
},
"2": {
"proto": "robotA",
"dockerTag": "robotA",
"dockerCmd": "launchRobot.sh --fieldPlayer",
"halfTimeStartingPose": {
"translation": [-3.5, 3.06, 0.24],
"rotation": [0, 0, 1, -1.57]

},
"reentryStartingPose": {
"translation": [-3, -3.11, 0.24],
"rotation": [0.0, 0, 1, 1.57]

},
"shootoutStartingPose": {
"translation": [2.6, 0, 0.24],
"rotation": [0, 0, 1, 0]

}
"goalKeeperStartingPose": {
"translation": [-4.47, 0, 0.24],
"rotation": [0, 0, 1, 0]

}
},
"3": {
"proto": "robotB",
"dockerTag": "robotB",
"dockerCmd": "launchRobot.sh --fieldPlayer",
"halfTimeStartingPose": {
"translation": [-0.75, -3.06, 0.24],
"rotation": [0, 0, 1, 1.57]

},
"reentryStartingPose": {
"translation": [-3, -3.11, 0.24],
"rotation": [0.0, 0, 1, 1.57]

},
"shootoutStartingPose": {
"translation": [2.6, 0, 0.24],
"rotation": [0, 0, 1, 0]

}
"goalKeeperStartingPose": {
"translation": [-4.47, 0, 0.24],
"rotation": [0, 0, 1, 0]

}
},
"4": {
"proto": "robotB",
"dockerTag": "robotB",
"dockerCmd": "launchRobot.sh --fieldPlayer",
"halfTimeStartingPose": {
"translation": [-0.75, 3.06, 0.24],
"rotation": [0, 0, 1, -1.57]

},

5



"reentryStartingPose": {
"translation": [-3, -3.11, 0.24],
"rotation": [0.0, 0, 1, 1.57]

},
"shootoutStartingPose": {
"translation": [2.6, 0, 0.24],
"rotation": [0, 0, 1, 0]

}
"goalKeeperStartingPose": {

"translation": [-4.47, 0, 0.24],
"rotation": [0, 0, 1, 0]

}
}

}
}

6


	API Specifications for Virtual Soccer Competition v1.01
	General aspects
	ROS and ROS2 Bridge

	Configuration file
	Protocol
	Opening the connection to the simulator
	Closing communication
	Sensor messages
	Acting messages
	Enabling and disabling sensors


	Appendix
	Example of json configuration


