
 Center Based Task Allocation in Multi Agent Systems

M.E.Shiri, A.Behzadian Nejad, H.Houshyarifar, E.Pasbani,
Department of Computer Science

 Faculty of Mathematics & Computer Science
 Amirkabir Univercity of Technology (Tehran Polytechnic),Tehran , Iran

 http://www.abn.50g.com/rayan
{shiri, houshyarifar}@aut.ac.ir

{ali_behzadian, ebrahim_61}@yahoo.com

Abstract. There are some problems in RoboCupRescue Simulation system
such as task allocation, path planning, inter-agent communication and so
on. We use some algorithms to solve these problems. This paper describes
the design and implementation of Rayan RoboCup Rescue Simulation
team and the algorithms used to solve problems relevant to this system.

1 Introduction

 RoboCupRescue simulation is a multi-agent system involves
heterogeneous agents that work together as a team to reduce disaster of an
earthquake in the city.Agents in this system are police force, police office,
ambulance team, ambulance center, fire brigade and fire station. With 6
different types of agents and almost more than 30 agents, communication
between agents and task allocation are difficult problems. To extinguish a fire,
save a civilian's life or clear a road, agents must go to the location of fiery
building, civilian or blocked road, therefore path planning is an important skill
of all platoon agents. There are some traditional algorithms that give us all pair
shortest paths (like Floyd). But these algorithms are inefficient and they need
whole graph information at the start.
 This paper is organized as follows: The overview of cooperation and task
allocation system is presented in section 2. In section 3 we describe inter-agent
communication language used in the system. In section 4, the algorithms of
path planning is described. And finally in section 5 a brief of the future work is
described.

2 Center Based Task Allocation

 Cooperation and task allocation are main parts of designing agents. For a
good and efficient design, all agents must cooperate with each others; allocate
tasks between themselves and complete work as a team.
 In Rayan team we implement a task allocation system named "Center
Based task allocation", in order to abandoning process of finding tasks and
assigning tasks to the headquarters of platoon agents.
 In this system agents either have some pre-ordered tasks that they should
do it lonely. Whole the system is inter-acting with kernel and environment.

This means that all agents have real-time information about events happening
in the environment around them.The scenario of task allocation divides into
two parts; which are center scenario and agent scenario.

2.1 Agent Scenario

 In our system agents have three states, and center assigns tasks to agents
depend on their states. These states are:

2.1.1 Not busy

 At this state, agent either has early completed its task or it hasn't any task
to do. At this state agent will makes decision on its own information and
selects tasks to do and if distinguishes that there is no urgent work at this time,
it moves in the world and receives the environment's information and sending
them to center (for updating center’s world model) At the end of each cycle.

2.1.2 toward target

 At this state if agent receives a message from center will compare it with
its current work and will do which has more priority. At the end of each cycle
the agent will inform the center if it has completed the assigned job or not?

2.1.3 Busy

 At this state agent continues its work and inform the center that it can't
accept the new task.

From the agent's point of view, so the process of each cycle is divided to

♦ Checking its state,
♦ Receiving tasks assigned by center,
♦ Making decision about its tasks,
♦ Doing task with highest priority.

2.2 Center Scenario

 At the start of each cycle, center process all information received from
platoon agents. Extract useful information from these data and updates its
knowledge-base.In the next stage, center finds the tasks and assigns a priority
to each task, and then selects agents that must accomplish these tasks.
Form the center's point of view, process of each cycle divides to:

♦ Processing the received data,
♦ Extracting useful information from these data,
♦ Finding the tasks and assigning priority to each task,

♦ Selecting the agents that must do these tasks based on factors like location and
state of the agent,

♦ Sending commands to selected agents.

Figure 1 shows center scenario described above.
 Some advantages of this task allocation system are that decision making
process becomes more precisely and it's very similar to the process happens in
the real world.

Figure 1. shows the process of center in a cycle

 The disadvantage of the system is the heaviness of communications used
in the system. To solve this problem agents must first avoids sending blind
messages (like messages that it didn't know that they are correct or not).
 And use Secondly a powerful inter-agent communication language that
guarantees the efficiency of messages (ratio of contents per length and number
of message).

3 Inter-agent Communication

 As mentioned above, an efficient inter-agent communication needs a
powerful language that supports all types of messages used between agents.
For this purpose we use a language proposed by Itsuki Noda and others in [2].
In this language the format of messages is:

 (SpeechAct : sender Agent
 : receiver Agent

 : content Content
 ...)
Some variations of SpeechAct are inform (that tells the sender believes
content is true), query-ref (that tells sender asks the receiver content is true
or not) and so on. For more for more details see [2].

4 Path Planning

 The path planning problem is relevant to all applications in which a mobile
robot should autonomously navigate. Finding the shortest path in an
environment that is only partially known and changing is a difficult problem.
There are some traditional algorithms that give us shortest paths in the graph
such as Dijkstra's algorithm or Floyd's algorithm, but these algorithms are. In
fact we can't use these algorithms on the partially known and changing graphs
like maps because the cost of edges are changing during time.For solving this
problem we use a method called "Radar Path Planning" [3].

5 Future Works

 We are working on a new flexible, extensible and documented framework
based on Java and we try to finish it before the competitions and if this
happens we will release it on the internet to simplify developing
RoboCupRescue agents.

 Acknowledgements

 We are thankful of members of NITRescue for their published source code
of 2001.

 References

[1] The RoboCupRescue Technical Committee: Robocop-Rescue Simulator
Manual, Version 0 Revision 4.
[2] Noda, Itsuki and Takahashi Tomichi and Morita Shuji and Koto Tetsuhiko
and Tadokoro Satoshi: Language Design for Rescue Agents.
[3] Ulrich Roth, Mark Walker, Arne Hilmann, and Heinrich Klar :Dynamic
Path Planning with Spiking Neural Networks,. TU-Berlin, Institute fur
Mikroelektronik, Jebensstr. 1, D-10623 Berlin
[4] Takeshi Morimoto: How to Develop RoboCupRescue Agent for
RoboCupRescue Simulation System 1st edition.
[5] P. Norvig and S. Russell, "Artificial Intelligence: A Modern Approach,
Prentice Hall, 1995.

