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1 Introduction 

This technical report describes the essential concepts of the 5Rings team [1] agents 
and illustrates the most relevant implementation issues. 

The section 2 presents a formal frame of the agent concept. At section 3, the formal 
frame is used to specify the RoboCupRescue agents. The section 4 describes the 
implementation of each agent constituent (from the formal frame). The last section 
outlines the current main strength and weakness of our implementation. 

2 The tuple representation of an agent 

At this section an attempt is made to formally frame the agent concept. We pretend to 
build a systematic and higher view of our agents’ implementation. 

The following 7-tuple defines the structure of an agent ag immersed in a 
multi-agent system: 

ag = < G, M, Wm(Εself, Εother-, Mr), PAc, HAc,, Ε, C > 

where, 

• G is a set of goals that the agent aims to achieve as a whole, 

• M is the theoretic model implemented by the agent, 

• Wm is an working memory inhabited by representations – self and other agents’ 
environment representation (Εself and Εother respectively) and any representations 
built to support the agent model (designated by the Mr symbol), 

• PAc is a set of primary actions or primary protocols that the agent can use, 

• HAc is a set of higher level actions or protocols that the agent can use, 

• Ε is an environment where the agent act, 

• C represents the constraints on the channels used for inter-agent communication 
and for the agent’s interaction with Ε. 



      

The agent has three main sources of G goals: i) the agent designer, that usually 
pre-defines goals, ii) the other agents, with whom an hierarchical relationship may 
exist, and iii) the human user, when such a direct interaction exists. 

The agent behavior implementation is superimposed by theoretical model M 
guidelines. The model ranges from a pure reactive and socially deaf to a deliberative 
and socially fulfiller agent. 

The agent working memory contains its own environment representation (e.g. its 
current state, historic evolution, aggregated knowledge) and the agent’s view of 
others’ agents’ perspective on the environment. All representations that need to exist 
in order to support the agent model M are also contained at Wm. 

The PAc symbol represents the primary (basic) capabilities used by the agent to 
communicate with others or to interact with the surrounding environment. 

The HAc symbol represents the higher level capabilities designed over PAc. 
The environment Ε, evolves accounting for agent actions and to models of change 

based on physical laws or artificial rules. 
The C links are used by the agents to communicate. We explicitly distinguish two 

C subsets: the ag to ag’ (inter-agent) communication subset and the ag to Ε (agent to 
environment) communication subset. From here we state that C = Cag ∪ CagE, where 
Cag represents the communication channels among agents and CagE, represents the 
interaction channels between agents and Ε. The Cag = Ø means that agents act with no 
communication (among them). The CagE = Ø means that agents can not interact with 
the environment and thus the simulation is not taking place (perhaps a replay of a 
previous simulation). 

3 Rescue agents based on the tuple representation of an agent 

The RoboCupRescue multi-agent system is inhabited by a set of agent types. Each 
agent type represents a set of agents with a specific capabilities’ pattern. Thus, there 
are differentiation capabilities, which only apply to a particular agent type (e.g. 
“extinguish” only apply to Fire Brigade agent type), and common capabilities that 
apply to all agent types (vision, hearing, speech and locomotion). 

The number of agents that belong to each agent type depends on the 
RoboCupRescue competition rules. 

The set AgType of agent types is: 

AgType = { Civilian, Fire Brigade, Ambulance Team, Police Force, Fire Station, 
Ambulance Center, Police Office } 

Each ag ∈ AgType is represented by its own tuple. To get things simple and clear we 
will first describe the basic “Fire Brigade” agent. 



The basic “Fire Brigade” agent follows Morimoto’s agent description [2] and was 
adopted by the 5Rings team as the first step towards more sophisticated rescue agents. 

The basic “Fire Brigade” tuple representation is the following: 

• G = { extinguish fires, inform on endangered agents }, 

• M is the very general “action is an immediate response to an external event” 
programming model, 

• Wm: Εself ≡ Εother is the map representation of the disaster space; Mr contains all 
state variables that support M, 

• PAc = { move(node_array), extinguish(nozzle_array), say, tell, hear say, hear tell }, 

• HAc = { route finder, fire selector }, 

• Ε is a city region (at Kobe, Foligno or random) for the five hours that take place 
after an earthquake, 

• C = Cag ∪ CagE, is physically materialized by one single channel; the usage of that 
same channel is sampled in time, so we may think of two logical channels with 
following constraint between them: i) Cag is only available between two 
consecutive instants where CagE is available, and ii) the time period between two 
consecutive CagE availability is about 500 milliseconds. 

For each agent type, the constraints on C also depend on the PAc element. We 
represent such constraint as a 2-tuple where the first element is a PAc subset and the 
second element is a numeric value representing the upper bound capacity of the 
channel. The C constraints are the following: 

Cag = { < {say, tell}, 4 >, < {hear say, hear tell}, 4 > }, meaning that, there is an 
upper bound of 4 outgoing (say, tell) and 4 incoming (hear say, hear tell) messages 
between two consecutive uses of CagE. 

CagE = { < {move(node_array), extinguish(nozzle_array)}, 1 >, meaning that, there 
is an upper bound of 1 message to post an action intention towards Ε. 

All other ag ∈ AgType are expressible as simple variations of G, PAc, HAc and C 
elements. More sophisticated agents require sophistication of M, Wm and HAc 
elements. 

4 The implementation of the tuple representation of an agent 

The tuple representation of an agent was implemented for the RoboCupRescue 2004 
competition and variations on G, PAc, HAc and C were sufficient to construct all the 
different rescue agents’ structures. 

The builder design pattern [3] was used to implement a flexible ag tuple 
representation. The Table 1 presents a code excerpt. 



      

concreteBuilder.buildConnector( initiatorCommunicator ); // C 
concreteBuilder.buildAgentToPlatformConnection();  // C 
concreteBuilder.buildAgentGoalSet();    // G 
concreteBuilder.buildAgentModel();    // M 
concreteBuilder.buildAgentWorkingMemory();   // Wm 
concreteBuilder.buildAgentPrimaryCapability();  // PAc 
concreteBuilder.buildAgent();     // ag 

Table 1.  The tuple implementation. 

Two different M elements (agent models) were implemented: 

• the first was called “baseline” and was used at the qualification stage; it followed 
the very general “action is an immediate response to an external event” 
programming model, 

• the second was called “RRR” and was used at the final competition stage; the 
model was built around the theoretic guidelines of reactive, deliberative and 
socially oriented agents; the “RRR” model proposes an equilibrium among the 
reactive level (R0), the self motivation reasoning level (R1) and the social strength 
towards global achievements (R2). The “RRR” model architectural guideline is 
graphically represented at the Fig. 1. 

 
Fig. 1.  The “RRR” agent architecture. 

To implement the reactive level, a simplified rule based engine was developed. At 
that level, rules such as self preservation are specified to all agents (e.g. if my health 
point is negative then move to a refuge; if I am buried then cry for help) as well as 
some rules about agent’s specific but basic behavior (e.g. for an Ambulance Team, if I 
am at the location of a buried agent and the estimated time of its rescue is lower then 
of its death, then rescue that agent). 



The motivation reasoning level (R1) is implemented as a belief, desire and 
intention cycle, with an intention persistence evaluation. The intention persistence 
guarantees fidelity to the current goal during a predefined number of plan repairs. A 
plan repair occurs when the plan cost deviation (difference between the estimated and 
the measured cost) exceeds a certain threshold. The plan is monitored at each 
simulation step and deviation updated. 

The RRR architecture was mapped to M as a control sequence of the agent 
behavior at each simulation cycle. The Table 2 presents an excerpt of the M 
realization. 
r0.ruleEngine.updateAgenda( r0.ruleSet ); 
r0.ruleEngine.runAgendaAllInteractionRules(); 
 
if( ! r0.ruleEngine.isAgendaActionSetEmpty() ) 
{ 
  E_Rule firstRule = r0.ruleEngine.getAgendaFirstAction(); 
  String firstActionName = firstRule.getStatementName(); 
  boolean r0_ACCEPT = r0.filter( firstActionName, firstRule ); 
  if( r0.ACCEPT ) 
  { 
    r1.inform( firstActionName, firstRule ); 
    r0.ruleEngine.runAgendaFirstAction(); 
  } 
} 
 
r1.updateBelief(); 
r1.communicateWithOtherAgents(); 
 
ArrayList newPlan = r1.buildNewPlan( r1.buildDesire() ); 
 
r1.persistPreviousIntention( newPlan ); 
r1.acceptNewIntention( newPlan ); 
r1.gotoContingencyPlan(); 

Table 2.  The RRR model (M) realization. 

The coordination reasoning level (R2) is not explicitly implemented at the above 
algorithm. The implemented coordination is based on a basic convention that mainly 
distributes the agent’s responsibilities over different geographical sections of the 
disaster space. These sections are predefined and known by all agents (the same 
responsibility allocation algorithm is executed by all agents). 

4.1 The reactive level (R0) 

The reactive level contains a set of rules with the general “condition implies 
behavior” format. Two rule subsets are defined: i) one for interaction, where 
“condition implies communication”, and ii) other for the action rules, where 
“condition implies action”. A total order is imposed over rules of each subset. 

The Table 3 shows each rule and the interaction (I) and action (A) lists (ordered 
subsets) for each agent type: Ambulance Team (AT), Police Force (PF), and Fire 
Brigade (FB). Each number indicates the position of the rule at its own list (I or A); 
conditions have qualifiers (<self>, <other> and <here>) that apply to the statement 



      

following the qualifier; behaviors have outcome indicators ([path]) to evidence the 
necessity of a planner or decision maker outcome. 

 

Table 3. The “condition implies behaviour“ rules and each rule’s order, within interaction (I) 
and action (A) lists, for each agent type (AT, PF and FB). 

Each rule list (I and A) is evaluated at each simulation cycle. All interaction rules (I) 
satisfying its conditions are fired; the first action rule (A) satisfying its condition 
become ready to fire (but does not fire).  

When a rule fires, its behavior is sent to the RoboCupRescue kernel process. When 
a rule becomes ready to fire, it goes through the R0 filter. If the filter accepts the rule, 
then the rule is fired. Otherwise the action proposed by the ready to fire rule is 
confronted with the outcome of the R1 reasoning. 

4.2 The micro-level reasoning (R1) 

This reasoning level starts with a belief update function. At each simulation step the 
function updates the beliefs concerning the buildings already visited by the agent 
(damaged civilian’s exploration) and the roads already visited by the agent (blockade 
exploration). 

The desires are built after the belief update activity. Each desire is a list of the most 
interesting (from the agent’s perspective) arguments for the possible agent actions. A 
total order is defined over desires. 

Thus for the Ambulance Team (AT) agent type, the following desires, for the move 
action, are defined: i) any humanoids buried within the agent’s vision radius, ii) any 
other AT agents at known locations, iii) any other rescue teams (Police Force or Fire 
Brigade) at known locations, iv) any civilians at known locations, v) any civilians at 
unknown locations (local exploration), and vi) any not burning building within the 
agent’s geographical section. 

For Police Force (PF) agent type the following desires, for the move action, are 
defined: i) any other rescue team reported blockade, ii) blockades within the agent’s 
vision radius, and iii) any unvisited road within the agent’s geographical section. 

Although the Fire Brigade (FB) implementation of the “RRR” model was not fully 
accomplished, the FB desires are: i) extinguish an early fire within its own 



geographical section, ii) extinguish an early fire elsewhere, and iii) extinguish any fire 
anywhere. 

The desires predefined order is used to select the first (following desire’s order) 
non empty list of preferable desires (most interesting  action arguments). 

The list of preferable desires is used to build a plan to achieve one of the elements 
in that list. A plan is a sequence of actions that takes the agent from its current state to 
a state described by any element contained at the preferable desires list. The planner 
minimizes a cost function, so the minimal cost desire is found during the construction 
of the plan. 

The minimal cost desire becomes the agent’s intention and a plan monitor is used 
to account for delays and repairs of the original plan. The intention persists until a 
predefined number of plan repairs occur; after that a new intention is allowed to be 
elected. 

A path planner and path plan execution monitor were implemented. The path 
planner implemented cost functions are: i) passable roads, where lower costs are 
assignment to roads the agent knows to be free of blockades, ii) shorter roads, where 
lower costs are assigned to lower length roads, and iii) wider shorter roads, where 
lower costs are assigned to wider (with more lanes) roads assuming the same length 
(uses length/lanes ratio). 

The path planner has two additional capabilities: i) the “must go” list, and ii) the 
“taboo” list. The “must go” list is used to indicate that the agent must go through, at 
least one of the locations contained in the list, before reaching its final destination. 
The “taboo” list gives the reverse indication, that is, the agent must avoid all the 
“taboo” list locations. 

The general path planner algorithm composes two sub-problems. The first is to get 
a path from the current location to a “must go” location. The second is to get a path, 
from the solution of the previous sub-problem, to one of the destination locations. The 
Table 4 shows the general planner algorithm. 
public ArrayList getWiderShorter( 
   Collection destination, Collection mustGo, Collection taboo ) 
{ 
  if( mustGo.isEmpty() ) 
  { return getWiderShorter( destination, taboo ); } 
 
  // The 1st SubProblem (from current to a mustGo location) 
  GIS_RoutingProblem firstSubProblem = 
   new GIS_RoutingProblem_widerShorter(  
          self.motionlessPosition(), mustGo, taboo ); 
 
  // The 2nd SubProblem (from "mustGo" to a destination location)  
  // Note: initial state of 2nd subproblem is still unknown 
  // (it will be the solution state obtained from 1st subproblem) 
  B_GIS_RoutingProblem secondSubProblem = 
   new B_GIS_RoutingProblem_widerShorter(  
          destination, taboo ); 
 
  // Return the composition of 1st and 2nd SubProblems 
  return getSolutionFromTwoSubProblemComposition( 
      firstSubProblem, secondSubProblem ); 
} 

Table 4. The general planner algorithm. 



      

The plan is monitored at each simulation cycle. Both the agent’s expected location at 
the next simulation cycle and the accumulated deviation (from expectations) are 
calculated. The Table 5 shows an excerpt of the method invoked at each plan 
monitoring time. 
public void updateTime( int time ) 
{ 
... 
  int elapsedTime = time – previousTime; 
  int elapsedTimeToConsider = Math.max(elapsedTime – unexpectedCost, 0); 
  unexpectedCost = Math.max(unexpectedCost - elapsedTime, 0); 
 
  int maximumExpectedProgress =  
      elapsedTimeToConsider * maximumExpectedProgressAtEachTime; 
 
  int effectiveProgress = distanceFromTo( 
      indexOfPreviousLocation, indexOfCurrentLocation, planToMonitor  ); 
 
  int deviation = maximumExpectedProgress - effectiveProgress; 
  accumulatedDeviation = accumulatedDeviation + deviation; 
... 
} 

Table 5. Accumulated deviation update during plan monitoring. 

When the accumulated deviation exceeds a certain threshold a plan repair is proposed. 
Then, after a predefined number of plan repairs a new intention may be elected. The 
Table 6 shows an excerpt of the method invoked during the evaluation of intention 
persistence; the intention persists for a predefined number of plan repairs. 
public void persistPreviousIntention( ArrayList aarr_newPlan ) 
{ 
... 
 PlanMonitor monitor = getMonitor(); 
 if( monitor.isExecuting() ) 
  if( monitor.getTotalNumberOfPlanRepair() < persistence_move ) 
   moveWithMonitorToDestination( monitor.getPlanDestination() ); 
... 
} 

Table 6. Intention persistence evaluation. 

4.3 The macro-level reasoning (R2) 

The coordination reasoning level (R2) assumes a basic convention that mainly 
distributes the agent’s responsibilities over different geographical sections of the 
disaster space. 

The implemented geographical responsibility defines a grid partition over the 
disaster space. The  Fig. 2 show a disaster space (Kobe) and the bottom left element 
(section) of its grid partition. 



 
Fig. 2. Kobe disaster space and the bottom left element of its grid partition. 

The grid number of rows and columns depends on the type of agent and on the 
number of agents of that type (e.g. if there are 15 Police Force agents a 4x3 grid may 
be defined). 

Agents are distributed so that all grid elements (sections) have the same number of 
agents and that at least one agent is free (not allocated to a specific section). These 
free agents are allocated to a 1x1 grid partition (a section that contains the whole 
disaster space). 

The grid allocation process occurs without inter-agent communication. The order 
relation between agents is mapped in an order relation between sections. Thus each 
agent decides by itself to get the section that corresponds to its “age” (the position in 
the array that contains all agent identities). Agents younger (higher index array) than 
the grid dimension get the whole disaster space. 

At each section there is also a home position – the node closer to the section’s mid 
point. A maximum distance (from mid point) is defined and if no node exists within 
that distance, than the agent gets the full disaster space. This tries to avoid allocating 
agents to sections with nodes mainly concentrated at the section borders. The Table 7 
shows the essential code for the section allocation process. 
// Agent class method 
protected E_SectionWithRoads getMySection() 
{ return mySpaceGrid.getHOME( getAge() ); } 
 
// SpaceGrid class method (a WorkingMemory component) 
public E_SectionWithRoads getHOME( int agentAge ) 
{ E_SectionWithRoads HOME = getSectionByID( agentAge ); 
  if( HOME.getHOME() == null ) 
  { return fullSpaceSection; } 
  return HOME; } 

Table 7. Allocation of sections (each grid element). 

The importance of this convention depends on the order of the desire that accounts for 
the convention. Thus at the current implementation, the reasoning concerning this 
convention really occurs at R1 level and not at R2. 



      

An additional convention is defined as a “fast crossing between section borders”. 
For each section, the node closest to each border, is detected and the “wider shorter” 
path is calculated as outlined in the Fig. 3. 

 
Fig. 3. The fast crossing roads between section borders. 

According to this convention Police Force agents must primarily ensure that those 
roads are clear; all other agents that pretend to use “fast and safe” roads should rely 
on this convention. 

5 The agent’s rescue performance 

At this point it is important to remark that the agent’s tuple structural definition 
proved to be flexible, concerning the exchange of the agent models and the 
implementation of the capabilities of the different agent types. The Police Force and 
the Ambulance Teams implementation both follow the RRR model; the Fire Brigade 
is the more incomplete implementation of RRR. The command centers (Police Office, 
Ambulance Center and Fire Station) implementation is still very immature; they 
mainly act at communication relay agents. 

The agent’s tuple structural definition alone does not imply a “good” rescue 
performance. From this report it is clear that the weakness of our agents follows from 
some main issues that remain to be handled: i) the explicit specification of the team 
work concept within the agent model, ii) the leader concept as a means to deal with 
coordination and communication scarceness, iii) a sophisticated situation evaluation 
and decision making technique, and iv) an effective usage of command centers 
(institutional leadership). 
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