RoboAkut 2004 Rescue Team Description

Baris Eker and H. Levent Akin

Bogazi¢i University, Department of Computer Engincering, 34342 Bebek, Istanbul,
TURKEY
{akin}@boun.edu.tr

Abstract. RoboAkut is a simulated multi-agent rescue team that com-
bines reinforcement learning with cooperation among agents so that
agents can learn mutually from each other. There is a hierarchy among
agents, and agent coordination is centralized. Each agent is capable of de-
ciding for itself when there is no support from other agents. The agents
make use of the sensory information they obtain to learn the state of
the environment, and consequently to decide on the actions to perform.
Each agent learns from the results of the actions it does. Two kinds of g-
learning is used, table based and neural network based. RoboAkut is one
of several projects carried out in the Artificial Intelligence Lab of the
Computer Engincering Department of Bogazici University. RoboAkut
has participated in the RoboCup Rescue Simulation League 2002 and
2003.

1 Introduction

Intelligent agents are entities that can perceive their environment and act upon
their percepts [1]. They are implemented and used in diverse areas such as meet-
ing planning and air traflic scheduling. The knowledge base and the inference
mechanism of agents are among the important factors determining their effec-
tiveness. Another issue is the learning capabilities of agents. In order to make
progress or to adapt to the changing conditions of the environment, an agent
must be equipped with a learning mechanism.

Although an agent may be capable of doing a certain task with high efliciency,
there are tasks that cannot be accomplished by a single agent. Multiple agents
of the same kind may be nceded in order to speed up the accomplishing of a
task such as cleaning a room. In addition, the task may be one that requires
expertise in many different areas, such as mechanical device designing. In this
case, agents that are experts in different areas are built, possibly by different
researchers, and they together accomplish the task. Moreover, the nature of the
task itself may make it necessary to use multiple agents, such as robotic soccer.

Disaster rescue is an area that is suitable for multi-agent design. Designing
intelligent agents that have rescuing, cooperating and learning capabilities can
help reduce the problems associated with disaster rescue. The agents can be
built in large quantities to be able to reach the whole disaster area. With their
compact size and sensors for visual and audible information, they can reach

the areas where human rescuers cannot reach. In addition, the agents can be
designed so that they can cooperate with human rescuers and those agents that
have been implemented by other researchers. In a disaster environment, agents
nced to cooperate and act fast in order to save victims, making it a challenging
problem for multi-agent rescarch.

The RoboCup Rescue simulation league of the RoboCup organization [2]
provides a simulated disaster environment in which the researchers can test
their implementations of rescue teams. The disaster simulation takes place on
modeled maps of cities. The cities are either ones where there has previously
been a disaster, or virtual ones designed specially for the simulation. Taking
the modeled map data as input, several simulators simulate different aspects of
a disaster. The environment simulators are the collapse, fire, traffic, and road
blockage simulators. The behaviors of civilians are simulated in addition. These
simulators work in a coordinated fashion. For example, when buildings collapse
and roads are blocked, traffic jams occur in that area and civilians cannot move
through blocked roads.

RoboAkut is one of several projects carried out in the Artificial Intelligence
Lab of the Computer Engineering Department of Bogazici University. RoboAkut
has participated in the RoboCup Rescue Simulation League 2002 and 2003. In
this work, we have proposed and implemented a multi-agent model for disaster
rescue teams in which the agents cooperate with cach other and learn from
experience.

2 The General Structure

In order to benefit from the usage of multiple agents in an environment, there
must be mechanisms for negotiation and cooperation between agents. Moreover,
a cooperative learning mechanism should be present so that achievements can
be made both in terms of cooperation and in terms of the action decisions.

In rescue operations, the agents must be capable of making the right decision
among many alternatives, and the decision must be timely.

The implemented multi-agent rescue team incorporates learning, coopera-
tion, hierarchy among agents and autonomy. The agents of the team can be clas-
sified into two groups in terms of their social roles: platoon agents and dispatcher
agents. Dispatcher agents are responsible for keeping their world information up
to date, and assigning jobs to platoon agents. Platoon agents are responsible for
bringing reorder to the disaster site. The agents can also be classified into three
groups in terms of their jobs: Police, firefighter, and ambulance. Ambulances
aim to rescue injured civilians and bring them to refuges, firefighters extinguish
fires, and police officers clear blocked roads. The simulation proceeds in cycles
of ’sense’ and ’act’ sequences. The agents have the following main components:
World model, the learning component, the I/O component, the route finder and
the performance module.

2.1 The World Model

Each agent in the team keeps its own world model. The structural information
on the map is provided initially to all agents. However, the agents know the road
blockages, building collapses, and injuries only within their visible range, which
is predefined as 10 meters.

Other than the provided information, cach agent also keeps an abstraction
of the world. The world model abstraction is done by determining the status of
civilians, buildings, and roads and combining these statuses to obtain a single
index. This index represents the environment state as seen by the agent.

The index indicating the status of buildings is calculated using Eq. (1)

Bi:a*Bl/Bt (1)

where B; is the building severity index, By is the area of burned buildings
and B; is the total area of buildings on the map. The index of the status of the
civilians is calculated as follows.

Ci=1-(Ch+((D_HP)/(C+ MAX_HP)))/(C; +1) (2)

where C; represents the civilian severity index. Each civilian is assigned a
health point, HP. In Eq. (2), the expression C, + (> HF;)/(Cy *x MAX_HP)
represents sum of the number of healthy civilians and the ratio of the total HP
of all civilians to the condition where all civilians are healthy. This expression
is used by the simulator in the evaluation of the performance of the ambulance
agents. In the state calculation, the ratio of this expression to the condition
where all agents are healthy is taken and subtracted from one. The index for the
roads is calculated with Eq. (3).

R;=ax*Ry/(Ry+ Ry) (3)

where R;, is the road severity index, Ry is the number of clear roads, Ry the
number of blocked roads, and the rate to normalize the severity index value.

The indices above are in the range of [0,1], where zero describes an ideal state
in which everything is under control, and one describes a disastrous state. In the
worst-case conditions, not all of the buildings burn and not all of the roads are
blocked. In order to make use of the index as much as possible, a normalization
rate is introduced to the road and building severity indices.

The road, building and civilian severity indices are consumed by the learning
component to calculate an index for the state the agent believes to be in. The
index for the world state is formed by combining < B;,C;, R; > triples into one
number. This calculation yields a whole number that describes the current state
of the environment as seen by the agent. We can increase the detail with which
we can describe the state of the environment by increasing the level of detail of
each component of the state.

2.2 The Performance Module

The performance module of the agents executes in a loop and controls the flow
of actions. The loop starts with receiving messages from the kernel, and making
actions upon the received information. Two types of messages can be received
by each agent “sense” message or “hear” message. Each “sense” message sent by
the kernel to the agents indicates the start of a new cycle. The agents keep track
of the elapsed time and the available number of messages that can be heard or
said in a cycle by keeping track of the received “sense” messages.

Platoon Agents. The platoon agents start by connecting to the kernel, getting
their identification numbers and sensory information. In cach cycle the world
information, abstract world information and the internal state representation
is updated. If the agent does not have a target, decides whether it will choose
a target suggested by the dispatcher or choose the target by itself. If it does
have a target, it checks whether there is a more prior target in the environment
or suggested by the dispathcer. When the agent decides on the target for the
current cycle, it acts to save the target. When there is no target, the agent goes
to random targets to explore the environment.

Dispatcher Agents. In each cycle the dispatchers assign their platoons to tar-
gets. Upon receiving feedback from the platoons, they update their Q-values and
learn about the performance of their assignment methods. Also, the dispatchers
act as a communication center, buffering and forwarding cach message to the
appropriate receivers.

2.3 The Routing Module

The structural information provided to an agent via ’sense’ messages includes
the positions and neighbors of each building and road in the environment. Using
this information, A* scarch is carricd out for finding a path from the source to
destination. There is a limit on the depth of the search tree for safety.

An agent may need more than one simulation cycle to move to its target if
the target is far or one of the roads on the path is blocked. In such cases, since
the environment is dynamic, the route is re-calculated.

2.4 The I/O Module

I/O component is responsible for communicating with the coordinator of the
simulators via UDP. Each agent sends commands to the coordinator when it
wants to do a specific task such as to move, to rescue an injured person, or to
spray water to a burning building. Communication among agents also passes
through the simulator coordinator. The agents communicate with cach other in
order to report an injured civilian or a blocked road, platoon agents send position
updates to their dispatchers and request job from them and the dispatchers

assign targets to their platoons. The messages spoken by the agents can be
heard by all other agents within 30 meters. Wireless communication can also be
used. The receivers of a wireless message when the speaker is a platoon agent
and a dispatcher agent are shown in Figure 1.

The number of spoken messages that can be received per simulation cycle
by an agent is limited. From all spoken messages arriving to an agent, the agent
must decide on which ones to hear. If all platoon agents tell the maximum
number of messages they can tell in each cycle (currently 4), then total number of
messages spoken in a cycle is 4% NV, where N is the total number of agents. Thus,
if an agent can hear four messages cach turn and if we lcave out the messages
an agent itself said, then each agent can hear only 1/(N — 1) of all messages
spoken each turn. As a result, an agent may end up in hearing messages not
important to it and miss important messages. Therefore, the agents must speak
only when it is necessary, and each agent must know which agents to listen to.
In order to make sure that cach agent receives the most important messages,
a hierarchical communication method is used. In this method, all agents use
wireless communication and all communication goes through the dispatchers.
Thus, all messages destined to a platoon agent are told to it by its dispatcher.
This makes it possible for messages not destined to a platoon to be filtered out. A
platoon can receive the necessary messages by listening only to its dispatcher. A
buffering mechanism is implemented for the dispatchers for storing the messages
that could not be sent because of the communication quota. When possible, the
messages are sent to their destination. As a result, message losses because of
communication quota are highly reduced.

2.5 The Learning Module

Table Based Q-Learning Each agent has a learning module. The platoon
agents learn to choose among the targets proposed by the dispatcher agents,
targets they see in their vicinity and the targets they are after currently. In ad-
dition, they learn which target in the vicinity they will save first. The dispatcher
agents assign targets to platoon agents, and receive feedback on the final status
of the targets. From the feedback, dispatcher agents learn which method of as-
signing jobs to agents is suitable in which state. Reinforcement learning [3] is
used as the learning method by all agents of the team. In reinforcement learn-
ing, an agent receives a positive or a negative reward at the end of a sequence
of actions. By repeatedly trying several combinations of actions and storing the
rewards, the agents form a policy, which determines which action is best in which
state. There are scveral methods of using the rewards for forming a policy. One
such method is the temporal difference of Q-values. A Q-value is the value given
to a state-action pair. It determines how successful an agent can be if it does the
given action in the given state. In the temporal difference method, at the end
of the sequence of actions, the Q-value associated with the initial state-action
pair is updated considering two different valucs. The first valuc is the cxternal
reward obtained, the second value is the Q-values available in the arrived state.
If by doing a sequence of actions the agent arrives to a state where there is a

high possibility of doing good actions, therefore actions with high Q-values, then
the Q-value associated with the initial state-action pair is increased.

The dispatcher agents assign jobs to their platoon agents by following some
predefined actions. The actions available to platoon agents are the following.

e Assign cach target to the closcst agent.

e Assign cach job to the closcst agent, starting by the most urgent (or hardest)
job.

¢ Assign each job to the closest agent, starting by the least urgent (or lightest)
job.

For each action possibility listed above, the assignments can be done so that
there are one, two, or three agents assigned to each target. Therelore, there
are nine actions available to a dispatcher agent. Two different Q-value update
methods were used for the dispatcher agents as shown in Eq. (4) and (5).

Qai = Qai + lr(Resa/n) (4)

Qui = Qi + Ir(R'[i] + Resa /100 + (R'[j] — R'[i)))/n (5)

where Qg; is the Q-value of the assignment action done in state i, Res, is
the result of the action done, n is the number of agents assigned to a specific
target, Ir is the learning rate. R’[i] and R’[j] are rewards associated with states
i and j respectively. The alternatives of target sources for the platoons are the
following.

¢ Continue saving the current target.

e Revert to a target suggested by the dispatcher

e Revert to a target in the environment

The alternatives of targets for platoon agents when deciding on a target in
the environment are the following.

e Save the closest target

e Save the target that is most severe

e Save the target that is most lightly damaged

Each alternative in a given state is associated with a different Q-value. Two
different methods are used in updating Q-values of the platoon agents as shown
in Eq. (6) and (7).

Qai = Qai + Ir(R[i] + Res, + (mazxQaj — Qai)) (6)

Qui = Qui + Ir(R'i] + Res, /100 + (R'[j] — R'[i])) (7)

where @,; is the Q-value of action a in state i, where state i is the state
action a was decided in, max@, is the maximum Q-value for all actions in state
j, where j is the state in which the action was completed, Res,, is the result of
action a, positive if successful, negative if unsuccessful, Ir is learning rate. RJi]
and R’[i] represent the reward of being in state i. R[i] has both negative and
positive values, where R’[i] has only positive.

It is important to note that states i and j are not successive states, i is the
state where the agent decides on an action, j is the state where the action is
ended either by success or failure. Since the state of the environment involves
the results of the actions of the other agents, the start and end states are not de-
terministic. This nature of the environment makes Q-learning the most suitable
reinforcement learning technique to be used for this task.

The agents can be run and decide on their actions in two different modes:
greedy or explorer. If the agent is running on greedy mode, it always tries the
action with the best Q-value so far. If the agent is running in explorer mode,
it can accept actions with lower Q-values with a predefined probability, which
is the exploration rate. The explorer mode is used during training, and greedy
modc is used during real action.

Using Neural Networks for Q-learning Since the environment where agents
live is continuous, having continuous states will be a better idea. Applying rein-
forcement learning using ncural nctwork may give us this flexibility. In order to
do this we propose a model. Our model mainly depends on RoboAkut system.
In RoboAkut, each agent calculates three indexes while determining their cur-
rent state and discretize them. We provide these 3 indexes as input to a neural
network without discretizing them. Our neural network has a hidden layer that
has 5 hidden nodes and an output layer that has 3 nodes since there are always
3 possible actions. In the greedy mode, the action that corresponds the output
node having the highest activation value is chosen. The neural network model
can be seen in Figure 1.

In the learning phase, we use the same formulas used by RoboAkut2003.
However, instead of updating Q table, we update neural network weights. We
start with random weights in our neural network. As an example, here we show
how we update weights for “job choice” for platoon agents. The formula used
for “job choice” was Eq.(7).

Our ncural network is used to calculate @,; valucs. We should update weights
of our ncural network using above formula. In our case,iis not a single valuc but
a combination of 3 values which are the values of input nodes. Using current
values of weights we first calculate Q,; at the right hand side, then using the
formula what new @Q,; should be. At that point, we have inputs, current outputs
and what outputs should be for neural network. Therefore using backpropaga-
tion algorithm, we can update ncural nctwork weights. If agents explore enough
around the environment, we expect neural network to converge.

In the table-based system, the agents explore independently and at the end
of each run, their QQ table values are averaged. However, in our case we obtain
a neural network for each agent and combining neural networks for same types
of agents and obtaining a same size network is not an easy task. We could
obtain such a network by using a supervised learning at the end of each run,
howcever conversion of this network would take much time and make the learning
time much longer. Instead, we propose making this combining operation while
running in greedy mode. We thought that agents would converge to very similar

Vaiue of Vaiue of Vaiue of
action 1 action 2 action 3

. T

Fig. 1. The neural network architecture for Q-learning.

networks since they run on same environment; only they start from different
positions. In our approach the same agent always updates the same network and
it is not combined with other networks at the end of runs. When the agents
run in greedy mode, they load all networks of same type of agents and calculate
outputs for all of these networks and sum them. The action that corresponds to
output nodc having the highest sum is chosen as the best action in the current
state.

3 Training and Results

3.1 Testing Table-based Q-Learning

Five different initial conditions are used in the training runs. These initial condi-
tions differ from cach other in terms of the number and locations of the buildings
that catch fire, the number and positions of the rescue agents and the civilians,
and the degree of the blockages and collapses. The initial conditions are indexed
from 0 to 4 so that in run i the initial condition (i mod 5) is used. After each
run, the rescue agents of the same type share their job choice and source priority
choice Q-values.

Two different groups of training were donc. In the first group, the Q-value
update equations used for the dispatcher and platoon agents are Eq. (4) and (6)
respectively. The exploration rate of the agents were 90

Table 1. Results obtained in the test of the first and second set of Q-values for the
rescue agents

Test Run No.|Unburned Area(lst set)|Unburned Area(2nd set)
1 321,393.50 474,666.20
2 573,172.20 970,345.00
3 953,362.70 626,542.30
4 566,928.70 807,389.80
5 717,295.00 1,001,274.60
6 621,107.40 1,060,766.40
7 309,622.70 971,498.30
8 719,643.90 1,120,146.90
9 503,064.80 726,179.70
10 675,484.10 867,592.30
Average 596,107.50 862,640.15

In the second training group Eq. (5) and (7) were used. These equations
were formed analyzing the results obtained in the first training group. In Eq.
(4) and (6), the reward function R[{] and Res, can both have positive and
negative values which yields that the Q-value may be decreased when target
was saved and it may be increased when target could not be saved. In order
to solve this issue, in Eq. (5) and (7) R[] is replaced with R’[{] which has only
positive values, and Q-value update is donc only when target is saved. It was also
noted that when the environment is in a bad state, the agents have more targets
to save, therefore the Q-values of bad states may get highter than Q-values of
good states. Therefore in Eq. (5) and (7) difference of Q-values is not taken
when updating a Q-value, instead the difference of the reward function is taken.
The state definitions guarantee that agents do not perceive state transitions
optimistically.

The rescue team was run in greedy mode using the two sets of Q-values
obtained from the two groups of training. Table 1 shows the results obtained.

3.2 Comparison of Table-Based and Neural network Based
Q-Learning

We trained our neural-network based system using 5 different maps and different
number of agents. In the learning phase, we made 300 runs. In the testing phase,
we run table-based sysytem and our ncural network based system 5 times for
cach map and averaged the results. The results obtained can be seen in Table 2.

Results show that our new implementation performs slightly better than
table-based implementation in most of our test cases. However, the results are
very closc to cach other. The difference for Mapl and Mapb is larger when
compared to others. The difference in Mapl is caused by very good performance
of our system for one trial out of five. Others were very similar to RoboAkut.

Table 2. The results obtained for Table-based and Neural Network Based Implemen-
tations

Mapl Map2 Map3 Map4 Map5
Table-based 21.323 60.359 50.705 21.136 48.648
Neural Network|33.128 61.162 51.553 21.187 58.076
Based

For Map5, our new system obtained results between 44.808 and 66.389, while
table-based system obtained results between 41.840 and 54.491. The results show
that our new system performs better in Map5.

4 Conclusions

The test results show that in the case of table-based Q-learning, the sccond
training method increased the performance of the agents by 44.7 percent as
compared to the first training method, and that both the platoon and the dis-
patcher agents can differentiate among the options they have and make suitable
decisions. Using neural networks for Q-learning also seems to improve results
even further, therefore it is also worth considering as an alternative. Moreover,
due to the nature of the method used, the infrastructure of the rescue team does
not rely on specific properties of a single map, and the learned behaviors can be
used on any map without any kind of preprocessing whatsoever.

References

1. S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall,
New Jersey, 1995.

2. The RoboCup Rescue Technical Committee, ”RoboCup-Rescue Simulator Man-
ual Version 0 Revision 4”7, http://kiyosu.isc.chubu.ac.jp/robocup/rescue/manual-
English-v0r4/manual-v0-rd.pdf, 2001.

3. S. R. Sutton and Barto, A. G., Reinforcement Learning I: Introduction, MIT Press,
Cambridge, MA, 1998.

