
Realistic cities in Robocup Rescue - An Open
Street Map to Rescue Converter

Moritz Göbelbecker and Christian Dornhege

Institut für Informatik⋆⋆

Universität Freiburg
79110 Freiburg

{goebelbe, dornhege}@informatik.uni-freiburg.de

Abstract. In this Infrastructure Competition contribution, we tackle
the problem of map generation from public sources. Usually the ma-
jor problem is not only the data conversion itself, but to get access
to the data at all. We solve this problem by using the website Open-
StreetMap.org, that provides mapping data for the whole world in a
wiki-style concept, as our source of data, thus being able to generate
maps for almost any city. Additionally we present not only a data con-
verter, but a plug-in to the JOSM map editor, gaining a fully functional
map editor and converter for Rescue maps.

1 Introduction

The Robocup Rescue League was founded with the idea to provide solutions for
large scale disaster events as the Great Hanshi-Awaji earthquake in Kobe [1, 2].
Since then the Rescue Simulation League has aimed not only at developing more
and more sophisticated multi-agent systems in the agent competition, but mem-
bers of the community have always been active in the development of realistic
simulators for the simulation league [3]. This has been strongly encouraged by
the introduction of the infrastructure competition rewarding such development.

(a) (b) (c)

Fig. 1. The figure shows the conversion of OpenStreetMap data to a rescue map for
the city of Graz. (a) The raw data in the JOSM editor. (b) The map in JOSM adapted
to Rescue specific needs. (c) The converted map in the Morimoto Viewer.

Besides the development of new simulators one major issue is the creation of
realistic maps. Although the Kobe map, along with other maps, has served as

⋆⋆ This research was partially supported by DFG as part of the collaborative research
center SFB/TR-8 Spatial Cognition R7



one of the default maps for years, it is obvious, that agent development should
not focus on a very limited subset of maps. Manually creating maps is a very
time consuming process and therefore the addition of new maps has been quite
rare. One solution to this problem was the construction of random maps, that
eliminates at least the possibility of tuning to each specific map [3]. The problem
with random maps is, that although each map is different, they usually follow one
construction pattern and thus their structure is still quite similar and uniform.

Realistic cities look very different than random maps, as they have grown
over the years and were formed during their development. Almost any city is
recognizable by its unique structure showing major roads, rivers, a coastline, as
well as parks, open places, downtown, industrial or residential areas. It is very
well possible to create such realistic city structures in a randomized way, but the
overall goal of the Rescue League is providing solutions for the real world. Thus
maps based on real world cities are favourable over random maps.

There have been previous approaches to generate maps based on GIS data [4].
The recurring issue is the acquiration of such official GIS data, that is not gen-
erally available for any city. We provide a solution to this problem by using
OpenStreetMap [5] as our source of GIS data. OpenStreetMap is a wiki-style
website dedicated to provide an open mapping resource for everybody. Almost
any big city and even many small cities are accurately mapped, providing GIS
data for the whole world. The data is licensed under the Creative Commons li-
cence making it available for reuse in the Rescue League for free. OpenStreetMap
provides several editors, one of which is JOSM, that incorporates a plug-in inter-
face. Our contribution is such a plug-in for the Rescue Simulation league, that
allows us to access OpenStreetMap data, process it, and finally write maps in
the rescue format. As this is a plug-in for the JOSM map editor, we not only
provide a converter for GIS data, but also gain a fully functional map editor for
Rescue Maps.

In the remainder of this paper we describe the structure of the GIS data in
section 2, the processing steps are shown in section 3 and 4, and in section 5 we
present examples of converted maps for different cities. Finally we conclude in
section 6.

2 GIS Data in the OpenStreetMap World Model

Compared to Robocup Rescue, OpenStreetMap uses a very simple, but at the
same time flexible data model. There are only three primitive types [6]:

– Nodes have an id and a location, given in longitude and latitude coordinates.
– Ways consist of an ordered list of nodes. Depending on its context, it may

represent a line (e.g. a street) or an area.
– Relations can contain an arbitrary number of other primitives (including

other relations) and can be used to model higher level structures.

The underlaying data model is XML, so all semantic information is encoded
in tags, key-value pairs of which each primitive can have an unlimited amount.
Although tags are in principle arbitrary, standardized tags have emerged to
represent commonly used information. Thus, the presence of a “highway” tag
states that a way represents a road, whose type is further specified by the value
of the tag. Table 1 lists a number of common tags that are relevant for rescue
maps [7].



tag semantics
highway a road of any kind
oneway true if the road is a one-way street
lanes number of driving lanes
area treat the way as an outline of an area
building for a way: the outline of a building
shop, amenity, building for nodes: indicate buildings
landuse general type of a larger area

Table 1. Commonly used tags in OpenStreetMap and their meanings.

There are several tags that are not of direct interest for the rescue simulation,
but which might help us to interpolate missing data. For example, the “shop”
tag on a node indicates the presence of a buiding at that point, even if there is
no outline present.

In the same way, the “landuse” tag on a way can give the automatic building
generator hints which kinds of buildings (if any at all) should be placed in that
area (e.g. no buildings should be placed in areas with “landuse”=“forest”) .

3 Map conversion

The map converter was implemented as a plug-in to the OpenStreetMap map
editor JOSM [8]. We perform the conversion in two seperate steps. First, we ex-
tract the relevant information into an intermediate representation. All processing
is executed on this intermediate representation. In the second step, this data is
saved as a rescue map.

3.1 Intermediate representation

The intermediate representation is a map layer in the OpenStreetMap data
model, which contains all the information required by the kernel and simulators
in an easy to extract fashion. We chose this approach, because the conversion
of data between the different models requires some amount of interpretation of
the source data. All the processing will now take part when converting to the
intermediate representation.

As this representation is valid OpenStreetMap data, it can be edited, saved
and loaded after the lossy parts of the conversion have finished. It is also easy
to import existing Rescue maps, thus gaining a well maintained map editor with
very little effort. Conversion to Rescue maps is then a simple task, as is only
requires writing of the already present data.

As all other semantics in OpenStreetMap, we model the Rescue specific data
using a set of custom tags. The neccessary information is commonly stored in the
form of properties, so we simply create a tag “rcr:property-name” = “property
value” for each property. We introduce a variety of new tags to express different
aspects of Rescue maps. These are listed in table 2.

3.2 Roads

Roads in OpenStreetMap are generally identified by the “highway” tag. Un-
fortunately, simply mapping all ways, containing such a tag, to rescue roads is
problematic due to the following reasons:



tag data type semantics
rcr:type {node, road, building} The basic type of the object
rcr:outline id The id of the building outline
rcr:entrances ids A list of entrance nodes
rcr:refuge bool This building is a refuge
rcr:fire bool This building is an ignition point
rcr:ambulances number Number of ambulances on this position
rcr:firebrigades number Number of fire brigades on this position
rcr:policeforces number Number of police forces on this position
rcr:civilians number Number of civilians on this position

Table 2. Tags used in the OpenStreetMap representation of Rescue maps

– Roads are mapped for the general public, not for rescue services. There is,
e.g., no distinction, if a way tagged as “highway”=”pedestrian” is merely
reserved for pedestrians, or if it is physically impossible to reach by rescue
vehicles.

– Sometimes, especially at larger junctions, each lane is mapped seperately,
creating a very complex road graph.

– In OpenStreetMap, ways can also represent areas, that cannot be represented
in the Robocup Rescue domain.

Therefore we employ postprocessing on the raw data. First, we add all roads
that are certainly passable by rescue forces. Next, among possibly passable roads
(like pedestrian zones, cycleways, footways) we select those, that are required to
reach all buildings already on the map. The intuition being, that each building
will have at least one road connection in the real world.

Finally, we perform a reachability check of all roads and remove those, that
cannot be reached from the main part of the map, thus eliminating small isolated
clusters, that might have been introduced as a map only contains a rectangular
section of the world.

To remove redundant roads, we only regard those, that have the “oneway”
tag set. We then iterate through each way, and at each crossing decide for each
set of way segments with the same orientation (i.e. outgoing or incoming), if they
can be merged into one segment. We merge the largest possible set of segments
for which the average angular difference is below a certain threshold and for
which the average direction of ways on the opposing ends of the segments is
roughly similar, thus avoiding merging opposite lanes.

This simplification can introduce some irregularity into the roads, so after-
wards we apply a simple smoothing algorithm to the modified roads. Figure 2
shows the different stages of our method.

3.3 Buildings

Buildings can be mapping in OpenStreetMap as ways, that have a “building”
tag. The Rescue map format doesn’t represent the building itself as a polygon
from nodes and edges, but only stores the outline in the building itself. Therefore,
when converting a building we construct a building node, that is located at the
centroid of the building polygon and holds an “rcr:outline” tag, pointing to
the corresponding building outline. This building node consequently receives



(a) (b) (c)

Fig. 2. This figure shows the steps of our road simplification algorithm. (a) a complex
junction with multiple lanes (b) the same junction after lane merging (c) the final result
after smoothing.

all rescue specific tags as, e.g., “rcr:area”. When saving a map, the outline is
automatically written to the map.

Building entrances are usually not modelled in GIS data, but necessary for
rescue operations. Fortunately buildings in OpenStreetMap data can have an
address tag, that we can use to select the correct street to connect a building to.
If no adress is given we fall back to selecting the nearest road.

One general issue with GIS data, that also applies to OpenStreetMap data, is,
that in contrast to roads, not all buildings are modelled. The Rescue League relies
on the presence of buildings, so we implemented a building generation algorithm
to fill unmapped areas. Basically, the algorithm follows the general idea, that
can, for example, also be seen in the rescuecore’s random map generator [3]. First
we identify city blocks, that are surrounded by streets. Secondly, depending on
the size of the block, we split it horizontally and vertically to gain the final
buildings. An example of this algorithm can be seen in figure 3.

During this autogeneration, we try to use as much information as the base
GIS data allows us to. We obviously retain every already manually mapped
building. Sometimes buildings are only mapped as nodes or addresses hinting
the location of a building. In such a case, we also place a building at that node.
Additionally important information can be gained from marked areas or landuse
tags. Those might mark parking areas, parks, forests, and other similar things
prohibiting us from placing buildings, thus keeping open places, that naturally
appear in the structure of most cities. Finally, when choosing parameters for
constructing buildings as their size or the spacing between buildings, we obey
“landuse” tags, that might mark areas as “industrial”, “residential”, and others.
Residential areas, for example, are usually formed from many small buildings,
that stand farther apart, which will especially influence the spreading of fires in
those areas. Although we do not always have the original building data, by using
those geographic annotations, we still think, that we can reproduce the non-
uniform structure of a city in a representative manner for the Rescue Simulation
League.

4 Scenario generation

Rescue maps not only consist of pure GIS data, but also describe a rescue sce-
nario. This consists of marking specific buildings as the stations and refuges,



(a) (b)

Fig. 3. An example of our building generation algorithm. (a) shows the original data.
(b) shows the same scene with added buildings. Note, that the already mapped building
in the top is kept during the conversion.

placing agents and civilians as well as choosing fire points. Our plug-in can also
edit those Rescue specific entities and save them to a map, thus providing a full
rescue scenario.

We provide a simple algorithm, that places a given number of those entities
on a converted map. As in previous sections we propose the use of semantic
information, if applicable. In this case, we can place refuges at buildings, that
have been tagged as hospitals. Additionally the probability for fire points can be
significantly higher in industrial areas. A simple example is presented in figure 6.

5 Results

In this section we present exemplary conversions of different cities as well as an
insight to our implemented tools and the conversion procedure.

The conversion procedure is presented in figure 4 and figure 5. The process
of generating a rescue map of any city follows the following few simple steps:

– Start the JOSM-editor and enable the Rescue plug-in.
– Via the download feature in JOSM, choose an excerpt from the world and

download the GIS data of this area.
– Click the Make Rescue Map button to create the intermediate representation.
– Optionally, the intermediate representation can be edited manually, or a

scenario can be generated.
– Save the map to the Rescue format and run it.

The scenario generation is shown in figure 6 during the conversion of London.
Scenarios can be adapted by simple parameters shown in the plug-in’s dialog.
As this data is present in the JOSM map editor all relevant data can also still be
edited, so that we not only have a simple conversion program, but a full editor.



(a) (b) (c)

Fig. 4. The figure shows the conversion of OpenStreetMap data to a rescue map for the
city of Berlin. (a) The raw data in the JOSM editor. (b) The map in JOSM adapted
to Rescue specific needs. (c) The converted map in the Morimoto Viewer.

(a) (b) (c)

Fig. 5. The process of map conversion for the city of Freiburg. (a) shows the down-
loaded data in the JOSM editor. (b) shows the intermediate representation in a Rescue
layer, that can be saved to Rescue format. (c) is a screenshot of the same map running
in the rescue kernel’s viewer.

6 Conclusion

We created a converter from OpenStreetMap GIS data to Robocup Rescue Sim-
ulation maps. By using OpenStreetMap as our source, we give the possibility to
create rescue maps for almost any city on the world, solving the common prob-
lem of getting the actual GIS data. Our implementation as a plug-in to the map
editor JOSM additionally enables us to not only convert maps, but also inspect
and edit converted maps, and finally gains us a fully functional map editor.

References

1. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shimada, S.:
Robocup rescue: Search and rescue in large-scale disasters as a domain for au-
tonomous agent research. In: IEEE Conference on Man, Systems and Cybernetics.
(1999)

2. RescueSystems: Robocup rescue. http://www.rescuesystem.org/robocuprescue/
(2008)

3. Robocup: The rescue kernel. http://sourceforge.net/projects/roborescue/
(2008)



(a) (b)

Fig. 6. This figure shows screenshots from within the JOSM map editor for the city of
London. (a) shows the raw GIS data of London. (b) presents the intermediate Rescue
layer, that can still be edited before being saved. On the lower right side, the options
dialog of our Rescue plug-in is visible.

4. Takahashi, H., Tanigawa, M., Takahashi, T.: Tool kits for using open source gis
data as robocup rescue gis maps. In: Robocup 2005. (2005)

5. Openstreetmap.org: Openstreetmap. http://www.openstreetmap.org/ (2009)
(date; 28. February 2009).

6. Openstreetmap.org: Osm protocol version 0.5. http://wiki.openstreetmap.org/
wiki/OSM_Protocol_Version_0.5 (2009) (date; 28. February 2009).

7. Openstreetmap.org: Map features. http://wiki.openstreetmap.org/wiki/Map_
Features (2009) (date: 28. February 2009).

8. Scholz, I., Stoecker, D.: Josm. http://josm.OpenStreetMap.de (2009) (date: 28.
February 2009).


