

Team Description Paper
SBCe_Saviour

Virtual Robots League-2009

Eslam Nazemi1, Ashkan Radmand1, Amir Saman Memaripour1, Iman Sarrafi1,
Mohammad Hossein Sedighi Gilani1, Reza Bakhshi

1 Shahid Beheshti University, Tehran, Iran

Abstract. The main approach of our team is to avoid using grid based mapping
and to use a vector based mapping instead. According to that, a fast vector
based SLAM, and a vector based navigation system were designed and
implemented. Although this approach needed so many new methods to be
designed and perfected, we had achievements such as less memory usage, less
communication in map, and more precise values. The main sensor used in our
agent is the Sick-LMS sensor, which is the only sensor our SLAM uses.

Keywords: Virtual Robots, Mobile Robots, SLAM

1 Introduction

Recently, all the virtual robot’s agents are designed using grid based maps. Even
the standard output for the competitions is a Geotiff file. The main reason they are so
popular is that they are easy to use; specially in determining the similarity of maps
any image based similarity method can be used (e.g. cross-correlation of two images).
But these grid based maps, have 4 drawbacks:

1. A resolution has to be defined.
2. If the resolution is too low, the resulted can’t be used. (the map will be low

detailed)
3. If the resolution is too high, the running time of a simple cross-correlation

may exceed the operational limit.
4. The maps will be big in the size, so sending and receiving maps will fill the

wireless bandwidth.
Because of the reasons above, we tried to use a vector based map instead of the

usual grids. In order to do that, we needed a new SLAM and a navigation method.
In section 2 the structure of the vector map and the way that the sensors output is

converted to this kind of map, are described; section 3 describes the SLAM we
implemented for such a map. Sections 4 and 5 describe how the communication and
the navigation is handled by the agents. And section 6 concludes the paper.

2 The Map Structure

In order to start with a simple structure which can show almost all possible maps,
our vector map is designed of one type of vector, the “Line Type Vector”.

This vector type is used to store the identified line segments of the walls. So they
will need to store two points as the start and the end of the line segment. But because
the sensors are noisy, and these maps have to somehow get fused with each other,
there are three more attributes. First is the ppl value, that stands for the “points per
line”, which is the logarithm of the number of points found on that line over the
number of times that line is seen. The second is the standard deviation of the line; the
points that have made the line were not precisely on that line. And the third is the
number of times that line has been seen, which is needed to calculate the ppl value.

So the structure can be defined as below:

 Fig. 1 definition of the line segment vector

After defining the structure, we have to define a method that converts the laser’s

output, to an array of defined vectors. To do so, the following series is done:
1. Each distance should be converted into its correspondent point.
2. An O(n) algorithm is used which clusters the points into clusters that more

likely belong to the same line.
3. The fittest line algorithm is used over each cluster.
4. The first node of the cluster is selected and its projection over the fittest line

is assumed to be the “a” value.
5. The last node of the cluster is selected and its projection over the fittest line

is assumed to be the “b” value.
6. The “seen” value is equal to 1.
7. The “ppl” value is the logarithm of the size of the cluster. (because “seen”

equals 1)
8. The standard deviation of the distances of the original points to the line is

calculated as “sigma”.
Now a local vector based map is generated out of the laser output, which is the list
of line vectors.

3 SLAM

Any SLAM method has two steps. The first step is to calculate the transition vector,
and the second step is to build up a global map using the local maps and their
transitional vectors.

3.1 Transition Vector

In order to calculate the transition vector, first the rotation is calculated, then
assuming the robot has first rotated and then moved forward, the movement vector is
calculated.

3.1.1 Rotation

To calculate the rotation value, a histogram is generated. In this histogram, each
line is represented by a Triangular function. Fig 2 shows a sample of a two lined map
converted to this histogram.

Having two histograms (local map and the pre local map), they are convolved into
each other. The angle that has the most convolution value is the angle of Rotation.

Fig. 2 Left image, is a simple two lined map. Right image is the theta histogram of the map.
The triangles are placed at 0 and π/2 values. The height of each triangle is equal to the ppl
value and the wideness of each is defined using the sigma value.

3.1.2 Movement

After calculating the “θ” value, the current local map’s vectors are rotated by a
simple 2x2 rotation matrix, so that the rotated current map and the previous map’s
line segments are almost parallel.

After rotating the map, we need some candidates for transition vector and a method

to find out which one of the candidates is the best one that fits the two maps. To
define such a fitness function, we defined a fitness function which implies on two line
segments. The function is defined as below:

Where,

And “d” is the Euclidian distance of the line segment joining the middles of two

vectors.
After defining the fitness function for line segments, we defined the overall fitness

function as follow:

 Fig.3 Fitness function used to calculate the fitness of two vector based maps

To generate the candidates, the easiest method is to use a genetic algorithm, which
somehow generates these candidates using the previous generation. But we used a
combination of a geometric method and the hill climbing algorithm.

At first, each line’s conjunction with its neighbor line is calculated. This gives us
some points which we call junction points. Then each junction point in pre-local map
is linked to each junction point in local map and the resulted vectors are categorized
according to their length and orientation. The top 10 vectors are selected, and the
fitness function is calculated over them. The vector with the greatest fitness value is
selected as the first step movement vector.

In step two, an iterative algorithm is used to refine the first step vector. To do so, a
small distance is selected and the four neighbors with that distance of the vector are
generated. If none of them had a better fitness value, the distance is dividend by 2 and

the same is done, otherwise the vector with the best fitness is selected and the
iteration continues.

3.2 Building a Global Map

In order to build a global map, a fuzzy method is designed and used. The fuzzy membership
value of each line is calculated according to the ppl and sigma value. Then the lines with the
maximum similarity which is calculated using the fuzzy membership value, length, start point,
end point and the orientation of the line, are fused to each other and they are replaced by a new
set of start point, end point, ppl, sigma and seen.

4 Communication

Regarding the high importance of communication among agents and its key role in
efficiency of the team’s output, this is one of the most important parts of the project.
Figure below illustrates the general structure of our Communication System.

Fig.4 structure of the designed Communication System

Components of this figure are described in the following:

1. Control Connection Layer
This layer makes the lowest layer of our structure and is responsible for
managing the control connection with WSS via TCP/IP protocol. We have
functions implemented for operations such as Get Signal Strength, Initial
Robot, Reverse DNS and DNS. The scope of this layer is limited to sending
and receiving control instructions to/from WSS.

2. Data Transmission Layer

The bases of sending and receiving information between two agents are
prepared in this layer. Send Data, Receive Data and Buffer Data are some
functions implemented in this section. What made us separate this layer from
the Control Connection Layer was the difficulties of implementation and
debugging these two sections together in one unified class?

3. Packet Formatting Layer

Packet Formatting is the other layer included in our structure concerning the
virtual league world cup. In this layer, we have functions for formatting
information, compressing them if needed, and detection and correction of
errors. Information formatting is necessary because of the variety of data
types transferred among agents, as each data type demands its own
interpretation and decision making methods. Image, text, and communication
instructions could be recalled among these data types. By the other hand, the
need to faster data transfer and shorter connection time between agents
shows the necessity of data compression, for which compressing algorithms
have been used. Also, concerning the environmental noises and the high
importance of bandwidth between two agents, error detection and error
correction techniques have been included in this layer [1, 4].

4. Routing Layer
This layer is included in our structure for two main reasons:

I. Finding the best communication path, this is considered the path
with least possible noises and intermediate agents.

II. The need to a connected graph which provides a communication
path between any two agents.

In order to achieve the above goals, Dijekstra’s shortest path algorithm
[2] was chosen among possible solutions. In our system, after the
communication between each two agents is started each of them sends its
signal strength with other agents to the other side in form of a package. This
transferred information is used by each side for updating the complete
communication graph it has. This graph helps making decisions about the
data transfer path. Each agent along this path will work as a communication
bridge that only gets and passes the data [3].

5. Logger

This layer is only used for controlling the behavior and working details of
the structure.

5 Navigation

For navigating, we used a method similar to the potential field. The main difference
is that potential fields are usually generated in a grid map, which we don’t have in our
agents. In order to navigate, first we defined forces on the following candidates:

1. Each line segment (wall) has a repelling force.
2. Robots also repel each other.
3. If there is an aim for robots, each aim attracts robots.
4. Every 15 seconds, each robots current position becomes a permanent

repelling force.
5. An accessibility value is calculated by using the signal strength and the

placements of the robots, this value is also assumed to be a force.

Using these five forces, in each state a robot can do the following actions:
1. Reducing (increasing) left wheel’s velocity by 1.
2. Reducing (increasing) right wheel’s velocity by 1.

These actions may make at most 9 different actions which the robot can do in one
step. Knowing the position and velocity, we can almost predict the 9 actions’ results.
So for those 9 positions, the potential is calculated and the best action is selected to be
done. If more than one step ahead is calculated, the navigation will be less faulty.

6 Conclusion

The system has not been fully tested, but by the partial tests the results are good.
Hopefully the system is completed until IranOpen competition.
This kind of map, describes the circles and curves as fragmented line segments.
Curves and circles are not usually used in buildings or the usual shaped objects, but
it’s better to add curve vector to the vectors used in the map. But that makes the
SLAM and the navigation potential forces more complex.

References

1. Morelos-Zaragoza, R.H.: The Art of Error Correction Coding (2nd ed.) Wiley. (2006)
2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms (2nd ed.)

Mc Graw Hill. (2001)
3. Doyle, J.: Routing TCP/IP Volume I (1st ed.) Cisco Press. (1998)
4. Razavi, R., Fleury, M., Ghanbari, M., Sadeghzadeh, M.: Delay-aware interleaving and

forward-error correction for video over wireless: a bluetooth case study, ACM. (2007)

