
RoboAKUT 2010 Rescue Simulation League Agent
Team Description

H. Levent Akın, Orçun Yılmaz, and Mehmet Murat Sevim

Department of Computer Engineering
Boğaziçi University, 34342, Istanbul, Turkey

{akin,orcun.yilmaz,mehmet.sevim}@boun.edu.tr
http://robot.cmpe.boun.edu.tr/rescue

Abstract. RoboAKUT is a multi-agent rescue team developed at the Artificial
Intelligence Lab of the Computer Engineering Department of Bogazici Univer-
sity. Our primary goal is to build a rescue team based on the market paradigm
with the mixture of regional task management, then show that this method can be
successfully implemented in highly dynamic, multitasking and multi-robot envi-
ronments. In this paper, we give a detailed description of the software architec-
ture and the algorithms to be used by the RoboAKUT team. Since in 2010 a new
simulator and a new library are released, we have developed new agents for the
competition. New rescue strategies are implemented together with the strategies
of the previous year. In addition, exploration task is achieved in a more effec-
tive manner by dividing the world into regions. Enhanced estimation mechanism,
noise handling, search algorithms and communication layer are the other main
improvements over RoboAKUT 2009.

1 Introduction

RoboCup Rescue Simulation environment is a disaster management simulation which
consists of multi-tasking heterogeneous agents (Fire brigades, Fire Station, Police Forces,
Police Office, Ambulance Teams and Ambulance Center). In addition to being one of
the best test beds for agent coordination, there are many other challenges such as devel-
opment of agent communication protocols for limited communication and noisy mes-
sage arrivals, multi-agent path planning, scheduling, optimization, supervised learning
for civilian death time and fire behavior estimation and unsupervised learning for agents
to develop policies.

RoboAKUT is a multi-agent rescue team developed at the Artificial Intelligence
Laboratory of the Department of Computer Engineering of Bogazici University. Team
performs rescue operations on the simulation environment provided by the RoboCup
Rescue Simulation League. RoboAKUT has participated in the RoboCup Rescue Sim-
ulation Competitions held in Fukuoka, Japan in 2002, RoboCup 2003 held in Padua,
Italy, RoboCup 2004 in Lisbon, Portugal, RoboCup 2005 in Osaka, Japan, RoboCup
2006 in Bremen, Germany, RoboCup 2007 in Atlanta, USA, and RoboCup2008 in
Suzhou, China, RoboCup 2009 in Graz, Austria.

Version 1.0 of the RoboCup Rescue Simulation League platform has been released
for RoboCup 2010. This version of the simulator has many changes including a new

library for developing rescue agents. For this year, RoboAKUT agents that use the new
Rescucore2 library are implemented.

In this team description paper, the team members and their contributions are pre-
sented at the next section. The key contributions of our team are briefly explained in
the second section. At the software architecture section, package architecture of Robo-
AKUT agents are described. World model section presents algorithms for dividing
world into regions and assigning them to the agents. In addition, communication sec-
tion explains the structure of the communication layer which includes priority mecha-
nism for message passing and noise reduction technique. Estimation section talks about
mechanisms which are used for estimating civilian life span and fire state. Rescue strate-
gies, map regions and market algorithms are presented at the agents section. And as a
result, the last section shows our conclusions for the project.

2 Team Members and Their Contributions

– Mehmet Murat Sevim (Developer)
– Orçun Yılmaz(Developer)
– H. Levent Akın (Advisor)

3 Key Contributions and Improvements Over 2009

The architecture of RoboAKUT is implemented from scratch for the 2010 competition.
The most important key contributions and improvements are the following:

– RoboAKUT world model is a new world model which divides the map into re-
gions. The number of regions are determined from the number of agents in the
map. The main roads of the city are used to determine the borders of the regions. In
order to visualize the regions a special viewer has been implemented. This viewer
shows the regions and assigns different colors to the regions and the main roads of
the city. The RoboAKUT world model is explained in more detail in Section 5.

– Communication System is basically a middle layer between the agents and the
kernel to send/receive messages. This layer can be considered as a filter for each
agent to get involved with the messages which they are related to. Since communi-
cation is the most important factor in multi-tasking and multi-robot environments,
we developed a technique for noise reduction in communication. Moreover, we de-
veloped a priority queue structure for our communication layer in this environment
where communication is a scarce resource. This structure is explained in more de-
tail in Section 6.

– Estimation Mechanism is used to estimate the conditions of the civilians, the
buildings and the roads on the map in order to assign the agents to tasks more
appropriately. This system includes fire state estimation and civilian life span esti-
mation.

– Task Assignment Mechanism is a novel approach that is peculiar to RoboAKUT.
In addition to the regional task assignment system, an auction system is being used
for the task assignment to each agent. This creates a hybrid market paradigm and
regional task assignment system. Detailed information is included in Section 9.

4 Software Architecture

Our software system is based on the rescuecore2 library. The main modules are:

– communication : provides enhanced priority management and message queuing
functionalities. All types agents have specialized communicator objects,

– communication.message : includes the message types,
– decision : contains decision manager class for the rescue agents,
– decision.task : implements task classes for agents,
– standard : contains extended versions of entities and world model,
– standard.region : manages the regions of the world model,
– search : provides search algorithms for the map,
– roboakut.viewer : provides viewer for world model,
– roboakut.market : implements market algorithms to the rescue environment,
– roboakut.agent : contains implementation of RoboAKUT agents.

5 World Model

A basic world model is provided by the simulator. This model keeps the minimum
required information about the world. A special model which is an extended version
has been implemented for the RoboAKUT agents. Classes of some entities in the world
are also extended as they are needed.

Fig. 1. A scene of divided regions from RoboAKUT viewer

The most important addition to the model is the regions as shown in Fig. 1. In order
to keep the exploration and tasks organized, the map should be divided into regions and
the agents should be assigned to these regions. Each agent is responsible for the tasks
in certain regions and the agents may also help the other agents when needed.

The separation of regions is done in the first cycle of the simulation by every agent.
The agents then determine the region they are currently in and tell the center that they
want to be responsible for this region. The center handles conflicts and unassigned
regions, and then sends the new region distribution to the agents. At the beginning
of the third cycle all the regions are set and they stay the same throughout the entire
simulation.

Moving agents within regions and moving agents from one region to another should
be done in an efficient way. Two buildings in a single region should be close to each
other and should be connected with short paths. Therefore, how regions are determined
is important. In order to determine the regions, first, the main roads in the map are
detected. They are the sequence of roads in the map that have the most lanes. After the
detection of the main roads, the regions are determined as the areas that are between the
main roads.

6 Communication

Communication is considered to be the most important part of our system. A special
layer is implemented for handling communication. The agent just tells the content,
priority and the channel of the message and all details such as how the message is
compressed or which method is used to send the message is determined by the commu-
nication layer.

The total length of messages sent in a channel is limited. In order to send messages
effectively, a priority queue of messages is implemented. The agent tells the message
and its priority to the communication layer. The agent may tell more than one message.
All messages are added to the priority queue. At the end of the turn, the messages
with the highest priority are selected. The number of selected messages depends on the
length of the messages and the bandwidth limit. The messages are selected such that the
total length of the messages does not exceed the bandwidth. Then the selected messages
are sent to the kernel. The remaining messages that are left in the queue may be deleted
depending on their validity. If they are not deleted their priorities are updated in the next
turn.

6.1 Messages

A special message architecture is implemented to make it easier to add new message
types and modify the existing ones. Each message has a list of properties that consists
of message type, message id, and type specific properties. The data type and the number
of bytes required for storing is known for each property. The messages are converted
to bytes with this information. Conversion is independent of the message type and no
extra implementation is necessary to convert specific messages to byte arrays.

The message type is used to convert the bytes to the associated message object. The
id is used to prevent the agents from processing a message more than once. The total
number of bytes that are used in a message representation is the sum of bytes required
for properties. For example, a ”Building is explored” message contains only the id of
the building and two bytes are sufficient to store this property. With the addition of two
bytes for message type and id, four bytes are enough to represent this message.

6.2 Noise Handling

One of the challenges about the communication is noise. The static noise is removed
from the latest rules so there are only two types of noise, namely dropout and failure.
We handle both types of noise by sending the message more than once. The number of
times a message is repeated depends on the probability of noise on the radio channel.
The noise levels of channels are different than one another so different number of copies
are used for different channels. On a channel without noise the messages are sent only
once.

The following formula is used to determine how many copies are required for a
channel.

numberO fCopies = d(log(0.001)
log(p)

)e

where p indicates the sum of probabilities of noise in the channel. This formula assures
that 99.9 percent of the messages are successfully received by the recipients. Note that,
in most cases the recipient receives multiple copies of the message but a message is not
processed more than once since the same messages are detected by ids and extra copies
are ignored.

7 Search Algorithms

A* search is used for path finding. The implementation of RoboAKUT 2009 is ported to
the new platform. In a disaster environment finding the best path depends on two main
factors. These factors are the length of the path and the blocks on the path. One path may
seem efficient in terms of distance, but it may contain a lot of blocks and clearing these
blocks may require many simulation cycles. As an extension for the search algorithm
of previous year, blocks on the path are also taken into account when determining the
best path.

8 Estimation Mechanisms

8.1 Fire Estimation

Each fire brigade agent holds a fire risk map of the city. This map is updated in each
cycle of the simulation according to available new data. This risk map directly maps
building ids and the estimated properties of these buildings. Fire risk property for a

building is calculated from fieriness of the nearby buildings and the ignition of the
building.

The fire brigades check the total risks of a fire site continuously. They determine
how many fire brigades are needed for the fire site by using the sum of the fire risks of
the buildings on the site.

In order to determine the costs of extinguishing a building task, how much simu-
lation cycle is needed to extinguish must be estimated. This estimation takes also the
necessary water refills into account. Moreover, it also considers fieriness and the total
area of the burning building.

8.2 Civilian Health Estimation

A civilian is categorized as helpless, will die soon, will die and will live according to
estimated time to live and closeness to a disaster area. In order to determine the category
and costs of saving the civilian, how much simulation cycle is needed must also be
estimated. If an ambulance team agent finds a buried civilian it can calculate this value.
However, if another agent explores a buried civilian and informs an ambulance team,
the ambulance team agents should consider the path to reach the civilian in addition
to the saving time estimate. This path most probably will contain some blocks and the
number of blocks is not accurate. Reaching the rescue site is just the first part for this
task. Costs of reaching to a refuge later is also considered.

For the auction mechanism, the cost of doing this job is estimated by taking the
predicted road blocks into account. This cost is very high for the farthest ambulance
team agents. Therefore, in most cases the nearest agents will win the task. This shows
an advantage of using the market paradigm in task assignment.

9 Agents

9.1 Map Regions for Agents

As described in Section 5, the whole map is divided into regions and the regions are
assigned to the agents such that every region has an agent of each type assigned to it.
The regions also have an important role in the auctions. Every task has an associated
region and the auction for the task is lead by the agent responsible for that region. The
type of the agent depends on the type of the task. The agent may choose not to lead the
auction and it can do the task itself if the profit of the task is greater that its current task.
In this case, the agent starts another auction to let the other agents complete its current
task.

The exploration of the map significantly depends on the regions. The exploration
tasks are not auctioned and they are handled by the agents of the associated region. The
exploration may be interrupted by other tasks as the agents take new tasks. However,
the map should be explored as soon as possible. In order to achieve this, the reward for
exploration is increased in the later steps of the simulation.

9.2 Multi-agent Coordination

Although multi-agent systems have been developed for solving different types of prob-
lems, these problems share some common characteristics. Gerkey and Mataric [3] de-
veloped a taxonomy based on three attributes of the problem definition. Here after we
will refer to this taxonomy as GM taxonomy. First, the problem is categorized as either
single robot (SR) or multi robot (MR) depending on whether the task can be achieved
by one or more robots. The next categorization is done regarding whether a robot is
capable of only a single task (ST) or more (MT). Finally, the problem is categorized
as instantaneous (IA) if all the tasks are known by the agents initially. The counterpart
definition of the assignment property is time extended (TA) which describes the prob-
lems where the tasks are discovered during the course of action. These definitions are
useful in classifying the problems in the multi-agent domain.

The RoboCup Rescue Simulation domain contains many complex problems and
is therefore very suitable for investigating multi-agent team development approaches.
The agents are clearly heterogeneous because according to the rules, only police forces
can clear roads, only ambulance teams excavate and transfer civilians and only fire
brigades can extinguish fires. The agents are MT agents where each agent is capable of
more than one task with tasks to its type and in addition, common tasks like finding a
civilian, watching fires and exploring the map. Some of the tasks are MR because of the
resource constraints, e.g., an ambulance team cannot rescue a civilian on time alone, a
fire brigade cannot extinguish a fire alone, etc. Moreover, since the roads are blocked,
any task containing a reach target task is MR because the roads must be cleared first.

Fig. 2. A task allocation scenario

Both types of task assignment are available in the system, since the map is known
by the agents. Exploring the whole map is a IA type of task and since the blocked roads,
fires and civilians are discovered during the simulation the tasks related to them are TA
tasks. It is also possible to simulate other types of problem domains by applying dif-
ferent configurations to the system. Single item auctions are not sufficient for ensuring
system optimality. Single item exchanges between robots with or without money lead to
poor and suboptimal solutions in some but apparently possible cases. A simple scenario
is depicted in Figure 2. The robots auction for the tasks which costs the lowest for them.
Therefore after the first auction round R1 adds B1 to its task list and R2 adds B3 to its
task list. In the second round R1 will add B2 because it becomes the best alternative for

the task. After all the targets are finished B2 will not be exchanged because it is best
handled after B1. The auction rounds are finished when all the agents are assigned to
the tasks. But after this, single exchanges cannot remedy the problem. The solution is
to allow some of the agents not to be assigned to any task as our work suggests.

We propose that by taking a simple plan into account while bidding in auctions, the
agent is capable of exchanging multiple items in single item auctions. The proposed ap-
proach [2]is implemented mainly in the multi-robot exploration task where centralized
solutions do not satisfy the communication and robustness requirements. In such solu-
tions, all the agents communicate with the center which introduces the single point of
failure problem. Moreover, if communication with the center fails or is noisy, the perfor-
mance degrades sharply even to non-functioning level. The exploration task, however,
must be completed in any condition even when only one robot survives.

In our approach, the agent simply plans a route that covers all the known targets by
using the TSP insertion heuristic. Each agent auctions for the lowest cost target which
is in fact the closest target to the agent. Other agents bid in the auction according to
their plan cost. The plan cost is the distance between the agent and target if the target is
the closest target or the distance to the previous target in the plan. The pseudo code for
the algorithm is given in Figure 3.

check whether the target is reached
plan current tasks
bid for the lowest cost item
if auction won

allocate task
else if deadlock detected,

solve according to total plan cost
else

stay

Fig. 3. Market plan algorithm pseudo code

Task Representation
Task definition is the key for a successful framework because it forms the basis of

agent abilities in the market. The properties of a task in our framework are discussed in
the following sections.

Task Constraints. There are several resource constraints in a system due to the fact
that there are many different objectives to maximize utility of many resources such as
time and fuel used by the agents. For the case of heterogeneous robots, robot types and
capabilities are also a kind of resource constraint. In addition to the resources of a multi-
agent system there are also coordination and synchronization constraints for tasks. The
tasks may depend on each other’s completion, the start and/or end time of a task. We
propose task decomposition as a graph that represents these properties. Moreover we
define task milestones for even atomic tasks when necessary. Task decomposition is
used by police force agents to sell their tasks to other agents to minimize the total time
of path clearance.

Task Milestones A task can depend on the completion of another task. Therefore
task dependencies prevent the agents from starting a task before the depended tasks
are totally completed. This preventing the start of a task is frequently encountered. For
example, assume that one of the agents is occupying a grid and will use it for some time.
Another agent, however, needs to use this grid to pass, but it knows that it is occupied
for some time. In this case, the agent should be allowed to move along the path at least
up to a destination which we call milestone. There are different kinds of milestones
during the course of the task and the start is only one of them.

Task Opportunities Since the plans consist of the best task orderings, we can say
that they eliminate the need for combinatorial auctions and put a kind of agreement
which is calculated to be the optimum way of doing the job. However the IT cases can-
not be handled because these domains do not allow future planning of the tasks because
of the dynamic environment. The problem can be solved by combinatorial auctions if it
is ST-SR-TA or ST-SR-IA and task decomposition if it is a ST-SR-TA.

In our approach, for each task type, we propose to define a list of possible task types
that can be executed simultaneously. Before bidding, the agent checks its task list and
tries to find a task opportunity that can increase its revenue, i.e. decrease the cost of
taking a task. The benefit of this approach is the same as task decomposition which
is trading for a task where the combination of tasks is planned behind the scenes and
implementing such a scheme without using complex task models in the framework.

The default task opportunity for a task type is itself. Therefore task opportunities
are the common version of the plan based bids paradigm. However its implementation
is easier since each task type is encapsulated and complexity is reduced. For example,
a police force can remove other blockades on its path to a specific blockade target. In
contrast, an agent can explore buildings on the way to the blockade and while bidding
it can offer less cost to the system.

Cost and Revenue Each task has a cost based on the resource requirements. How-
ever having representations that depend on only the cost is not sufficient for multi-
tasking environments, since an agent may minimize its costs but this does not yield
maximization of the overall profit. Therefore the revenue for each task must also be
defined and used by the system. In a market economy every asset has its price and the
price is determined by the market mechanisms like supply and demand. So the price is
not static and it is also subject to change according to the changes in the environment.
Therefore revenue is not static. In multitasking dynamic environments where tasks are
assigned in time extended fashion any task can be abandoned if its cost is affordable. As
a result, the cost is not only a function of the resource usage but also the opportunities
that the agent is missing.

Task Notifications All the tasks the agent can execute or can be a part of are stored
by all agents. Therefore no task is left unexecuted because the task is never lost due
to robot failures or communication errors. But the agents cannot store the tasks forever
even if the task is finished or expired. The task status also needs to be synchronized.
Task notifications are defined for each task and sent when necessary.

Task Execution Preconditions of a task is valid for some time frame, a world state
or simply exists in the environment. These preconditions must be checked for each time
step. If an inconsistency is discovered other agents are notified as described above.

Task Allocation and Coalition Formation

Coalitions are necessary for most of the heterogeneous agent domains. Because of
the diversity of the robot capabilities, typically one agent is not capable of accomplish-
ing a task alone. Tasks can be categorized as ST when one agent is able to achieve it or
MT when a coalition needs to be formed.

– ST case: The task is auctioned and one of the agents wins the auction. After this, if
the task is decomposable the winner agent starts auctions for sub-tasks. A coalition
is formed if any part of the task is sold.

– MT case: The tasks are auctioned depending on the task graph and a single task is
reached. Then the subtasks are treated like the single task case.

Both cases are almost identical and show that the tasks can be decomposed and
auctioned iteratively. For ST tasks there is another case in which the coalition emerges
from the needs of the heterogeneous agent teams. The task types are predefined as ST
or MT but while executing, a ST task that must be done by other types of agents can be
discovered that blocks the agent and prevents it from doing the task. For example, while
trying to reach a target, a block can be discovered on the road and unluckily on the only
path to the target. In this case, the agent requests help from other agents by auctioning
as in the two cases. We call this dynamic coalition formation and the required task is
added to the task graph of the requiring task.

10 Results

We have tested the current implementation with the latest working simulator package
using the Kobe map as shown in Figure 4. In the sample runs about 60 percent of
the civilians are rescued. The total health proportion of the civilians at the end of the
simulation is nearly 0.5 as illustrated in Figure 5. The fires are extinguished before they
spread and in most cases there are only a few collapsed buildings at the end of the
simulation. Building damage score is more than 95 per cent in all runs.

Fig. 4. The world at the end of the simulation

Fig. 5. The score graphs of a sample simulation

11 Conclusion

In this paper we presented an overview of the agent system model and the algorithms
of RoboAKUT 2010 team which consists of market based agents which can utilize re-
sources effectively even under dynamic conditions. The exploration of the map has been
optimized by using a world map with regions. Enhanced estimation mechanism, noise

handling, search algorithms and communication layer are the other main improvements
over RoboAKUT 2009.

The test runs on the new simulator show that the fires are successfully extinguished
and the majority of the civilians are saved.

References

1. Kose, H., K. Kaplan, Ç. Meriçli, U. Tatlıdede, and L. Akın, ”Market-Driven Multi-Agent
Collaboration in Robot Soccer Domain,” in V. Kordic, A. Lazinica and M. Merdan (Eds.),
Cutting Edge Robotics, pp.407-416, pIV pro literatur Verlag, 2005.

2. Tatlıdede, M. U. and H. L. Akın, ”Planning for Bidding in Single Item Auctions,” First In-
ternational Workshop on, Agent Technology for Disaster Management (ATDM), pp.85-90,
2006.

3. Gerkey, B. and M. Mataric. ”A formal analysis and taxonomy of task allocation in multi-robot
systems,” International Journal of Robotic Research, vol. 23, pp.939–954, 2004.

