RoboCup Rescue Simulator on Graphics
Processing Units

Prashant Sethia and Kamalakar Karlapalem

Abstract. In this paper, we present the utility of porting the code for
RoboCup Rescue Simulator with the same architecture on top of Graphics
Processing Units. We use Compute Unified Device Architecture (CUDA)
that leverages the parallel compute engine in nVidia graphics processing
units (GPUs) to solve the computational problems related with the simu-
lator. We find that the SIMT (Single Instruction Multiple Thread) archi-
tecture of GPUs is coherent to the nature of rescue simulations. We model
agents as light-weight GPU threads (maximum number of threads possible
is 241 in CUDA) which execute in parallel on the multi-core GPU to do
computations in a fraction of the time required by the CPU. Further, ex-
ecution on GPU provides an opportunity for parallel execution of a large
number of agents which allows different events to occur simultaneously in
the simulated agent universe giving more realistic results in each snapshot.
Most importantly we are able to increase the number of agents in the res-
cue simulations from a few thousands (in the current simulator) to a few
millions.

Key words: RoboCup Rescue Simulator, GPU, CUDA, Multi-core

1 Introduction

Developing tools for disaster-rescue simulations has been an active area of research
in the last decade, with emphasis being laid on different aspects - architecture,
scalability, efficiency, robustness, effectiveness in modelling - one such tool being
RoboCup Rescue Simulator [5]. The current version of the simulator utilizes Central
Processing Units (CPU), be it a single CPU with single core or a grid of processing
units with multiple cores. In CPU based simulations performance is often raised by
increasing the number of cores. Further, the current simulator uses Java objects for
modelling agents and the geographical informations which require large amounts of
main memory, thus limiting the maximum number of civilian and rescue agents to a
few thousands. Moreover, in simultaneous multi-threading on CPUs the number of
concurrent threads in a single core is limited to two and context switching between
threads is heavy, thus limiting the number of parallel threads to a few hundreds.
Consequently, the rescue simulator executes the different agents in cycles in a lim-
ited number of threads, rather than executing each agent in parallel in a different
thread.

The possibility of porting the simulator code on GPUs has not been studied
till now. We coded a dummy rescue simulator, having the same architecture as
the current version of RoboCup Rescue Simulator, for execution on CUDA driven
nVidia GPUs. When executing on GPUs, we were able to scale up the total number
of agents in the rescue simulation to ten million. Further, the number of concurrent
threads on a single Tesla T10 GPU is 30,720. Thus, the amount of concurrency
provided by the GPUs is significantly higher than the CPUs. This factor is a boon

2 Prashant Sethia and Kamalakar Karlapalem

to rescue simulations because we can get rid of cycle based simulation and pave way
for concurrent, parallel simulations with each agent acting in a separate thread, and
events occuring simultaneously in parallel as they are supposed to be in real life.
Increased number of agents and concurrent execution of simultaneously occuring
events in the simulated world enhances the quality of disaster-rescue simulation
giving realistic results. Lastly, the speed-up provided by porting the simulator code
on GPU is at least ten thousand times against a CPU of comparable configuration.
This allows us to model one second of the real world clock as one cycle of the
disaster-rescue simulation, thus giving a more detailed and fine-grained simulation
with even lesser amount of time taken than the current simulator.

1.1 Background and Related Work

The RoboCup Rescue Simulator [4] consists of five modules : Kernel, agents, com-
ponent simulators, GIS (geographical information system) and viewers. Individuals
in the simulation system are modelled as agents, number of agents in the current
simulator being limited to a few thousands. Kernel is responsible for managing all
the communication between agent modules (agents cannot communicate directly;
but can communicate via Kernel). Kernel receives commands from different agents,
filters them, and broadcasts them to component simulators. Component simulators
correspond to various simulation domains, such as earthquakes, fires, logistics or
traffic jams and compute what will happen in the world based on current events and
activities. These computations are sent to the Kernel, which integrates the results
from several component simulators and broadcasts the result to the simulators and
GIS. Kernel waits for a fixed period of time, €(as it is a real-time simulation), to
receive computations from the simulators. If some of the simulator messages fail to
reach within this time limit, the Kernel may present a wrong picture of the world
to these simulators and GIS.

A lot of work has been done in improving the code organization and in de-
velopment of RoboCup Rescue Simulator. Several improvements have been made
since the first competition held in RoboCup, 2001 - automatic validation of maps
on Kernel startup, ability to run the simulation step-by-step or automatically, new
tools for generating maps and scenarios have been developed and design of commu-
nication protocols are made more robust. The current version [6] of the simulator
has these improvements.

However, the dependance on main memory is still a problem with the current
simulator and limits the number of agents in the simulation. This problem has
been addressed in [3], in which a database driven model of the rescue simulator
is provided. This model eliminates the dependancy on main memory by modelling
each entity in the simulation as a relational table. But as the number of agents are
increased to a few hundred thousands, the model incurs significant latency costs
in accessing the database resident in the hard disk. Moreover, it still uses a cycle-
based approach for the execution of agents, which is against the true nature of a
multi-agent simulation.

1.2 Motivation for Using GPUs

GPUs are based on multiprocessors each with 8-10 cores and hundreds of ALUs, sev-
eral thousand registers and some shared memory. Besides, a graphics card contains
fast global memory (which can be accessed by all multiprocessors), local memory
in each multiprocessor, and special memory for constants. Different from multicore
CPUs, the cores on the GPU are virtualized, and GPU threads are managed by

RoboCup Rescue Simulator on Graphics Processing Units 3

the hardware. Such a design simplifies GPU programs and improves program scal-
ability and portability, since programs are oblivious about physical cores and rely
on hardware for thread creation and management. Most importantly, these several
multiprocessor cores in a GPU are SIMT (single instruction, multiple thread) cores
and execute the same instructions simultaneously. This programming style is useful
for multi-agent simulations in which we have same code for same type of agents.
Further, GPU threads are lightweight threads and do not require much context
switching. Whenever a request for a thread comes in, an idle thread is picked up
from the formerly created pool of threads. Switching from one thread to another
costs hundreds of cycles on CPUs, but GPUs switch several threads per cycle.

Multiple GPU devices can be ported on a single processor. The different com-
ponent simulators are run on separate devices and Kernel on a separate device.
Since all devices are ported to the same CPU, the transfer of percept information
need not be serialized and no string manipulations need to be done. These factors
further enhance the performance and take up the number of simulated agents to a
billion (with thirty GPU devices plugged-in).

The GPUs, available today, are general-purpose parallel processors with sup-
port for accessible programming interfaces and industry-standard languages such
as ‘C’. nVidia Compute Unified Device Architecture (CUDA) [1] is a technology
that enables programmers and developers to write software to solve complex com-
putational problems in a fraction of the time by utilizing the many-core parallel
processing power of GPUs. It provides a ‘C’-like programming language, ‘C for
CUDA’ (C with nVidia extensions), compiled through a PathScale Open64 C com-
piler, to code algorithms for execution on the GPU.

2 nVidia Compute Unified Device Architecture

The CUDA architecture is built around a scalable array of multi-threaded Stream-
ing Multiprocessors (SMs). At its core are three key abstractions - a hierarchy
of thread groups, shared memories, and barrier synchronization - that are simply
exposed to the programmer as a minimal set of language extensions. Threads are
organized in two- or three- dimensional thread blocks. Threads within a block can
co-operate among themselves by sharing data through a shared memory and syn-
chronizing their execution to co-ordinate memory accesses. These multiple blocks
are organized into a one-dimensional or two-dimensional grid of thread blocks. The
threads of a thread block execute concurrently on one multiprocessor. As thread
blocks terminate, new blocks are launched on the vacated multiprocessors. The
number of thread blocks in a grid is typically dictated by the size of the data being
processed rather than by the number of processors in the system. Number of thread
blocks can greatly exceed the number of processors.

A multiprocessor consists of eight Scalar Processor (SP) cores, two special func-
tion units for transcendentals, a multi-threaded instruction unit, and on-chip shared
memory. The multiprocessor creates, manages, and executes concurrent threads in
hardware with zero scheduling overhead. It implements the barrier synchroniza-
tion intrinsic with a single instruction. Fast barrier synchronization, together with
lightweight thread creation and zero-overhead thread scheduling, efficiently support
very fine-grained parallelism, allowing, for example, a low granularity decomposi-
tion of problems by assigning one thread to each data element (in present case,
assigning a thread to each agent). To manage hundreds of threads running several
different programs, the multiprocessor employs a new architecture, SIMT (single-

4 Prashant Sethia and Kamalakar Karlapalem

instruction, multiple-thread). The multiprocessor maps each thread to one scalar
processor core, and each scalar thread executes independently with its own instruc-
tion address and register state.

CUDA threads may access data from multiple memory spaces during their
execution. Each thread has a private local memory. Each thread block has a shared
memory (16kB in size) visible to all threads of the block and with the same lifetime
as the block. Finally, all threads have access to the same global memory. There are
also two additional read-only memory spaces accessible by all threads: the constant
and texture memory spaces. The global, constant, and texture memory spaces are
optimized for different memory usages.

3 nVidia CUDA’s Programming Model

‘C for CUDA’ extends C by allowing the programmer to define C functions, called
kernels !, that, when called, are executed N times in parallel by N different CUDA
threads.

A kernel is defined using the __global__ declaration specifier and the number of
CUDA threads for each call is specified using a new <<< ... >>> syntax. The
dimension of the grid is specified by the first parameter of the <<< ... >>> syntax,
while the second parameter specifies the number of threads to be invoked.

Each of the threads that execute a kernel is given a thread identifier that is
accessible within the kernel through the built-in threadldz variable. Similarly, each
block in the grid is given a unique identifier accessible through variable blockldz.
threadldr and blockldx both start from index 0 and together they uniquely iden-
tify a thread by the relation (blockldx * blockSize + threadlIdz). A kernel can be
executed by multiple equally-shaped thread blocks, so that the total number of
threads is equal to the number of threads per block times the number of blocks.
Thread blocks are required to execute independently: it must be possible to ex-
ecute them in any order, in parallel or serially. This independence requirement
allows CUDA to schedule thread blocks in any order across any number of cores,
enabling programmers to write code that scales with the number of cores.

CUDA'’s programming model assumes that the CUDA threads execute on a
physically separate device that operates as a coprocessor to the host running the
C program. This is the case, for example, when the kernels (also referred as device
code) execute on a GPU and the rest of the C program (referred as host code)
executes on a CPU. Further, it assumes a system composed of a host (CPU) and
a device (GPU), each with their own separate memory. Kernels can only operate
out of device memory, so the runtime provides functions to allocate, deallocate,
and copy device memory, as well as transfer data between host memory and device
memory. In order to facilitate concurrent execution between host and device, kernel
launches are made asynchronous: control is returned to the host thread before the
device has completed the requested task.

The number of blocks a multiprocessor can process at once, referred to as the
number of active blocks per multiprocessor, depends on how many registers per
thread and how much shared memory per block are required for a given kernel since
the multiprocessor’s registers and shared memory are split among all the threads
of the active blocks. If there are not enough registers or shared memory available

! To avoid confusion between CUDA kernel and the Kernel of simulator, the latter is
always capitalized and italicized.

RoboCup Rescue Simulator on Graphics Processing Units 5

per multiprocessor to process at least one block, the kernel will fail to launch. The
number of registers required per thread (for a given kernel code), shared memory
required per block and its effect on performance can be determined using CUDA
Occupancy Calculator [2] provided by nVidia CUDA.

A host system can have multiple devices. These devices can be enumerated, their
properties can be queried, and one of them can be selected for kernel executions.
Several host processes can execute device code on the same device, but by design,
a host process can execute device code on only one device at any given time. As a
consequence, multiple host processes are required to execute device code on multiple
devices. Also, any CUDA resource created through the runtime in one host process
cannot be used by the runtime from another host process.

4 Programming RoboCup Rescue Simulator with CUDA
4.1 Modelling Agents

We model each agent, both civilian and rescue agents, as a separate thread on
the GPU, with agent identifier being uniquely assigned as (blockIdz * blockSize +
threadldz). Agent code is written as the kernel function and GPU executes this
code in parallel threads, one thread for each agent. Therefore, agents of the same
type share the same kernel code.

4.2 Programming Simulator Kernel

The Kernel runs several number of threads, known as computation threads, for
processing agent modules’ messages and for computing the sensory information for
each agent in each cycle of the simulation. If there are N agents in the simulation
and Kernel is running M computation threads, then each computation thread is
responsible for processing requests for [N/M] agents. Each agent is mapped to a
computational thread and the same computational thread processes the requests
for this agent in every simulation cycle. In an ideal scenario, M is kept equal
to N. The latency of computing perceptions for each agent serially is a major
bottleneck in the current version of RoboCup Rescue Simulator. The proposed
simulator on GPU does away with this latency through the parallel computational
threads. The perception computation which initially had a complexity O(N) has the
new complexity as O([N/M1). The code for computing the perceptions of different
agents is specified as the kernel code for execution by the computational threads of
the simulator Kernel.

4.3 Programming Component Simulators

The simulation system consists of D number of GPU devices if there are (D-1)
simulation domains, with each domain being run by a single component simulator.
Kernel and component simulators are run on separate devices. The device which
runs Kernel has no agent threads running on it and executes only the computational
threads. The devices running component simulators has the agent threads being
divided among them equally.

The computations done by a component simulator can also be easily paral-
lelized. The civilian simulator creates different agent threads for each civilian, each
running the civilian agent code in the kernel function. The fire simulator computes
the state of the environment by dividing the city into equal areas and does the

6 Prashant Sethia and Kamalakar Karlapalem

computation for each of the areas in parallel threads. The number of divisions de-
pend on size of the city and complexity of the component simulator’s simulation
domain.

4.4 Execution of the Simulation Cycle

Steps in the simulation cycle are basically the same as in the current version of the
RoboCup Rescue Simulator; the changes are in the way we execute them on the
CUDA driven GPUs. Cycle begins with the Kernel computing the sensory infor-
mation for each individual agent in separate concurrent computational threads. The
information computed is represented as an appropriate data structure containing
data elements for each of the parameters in accordance with the protocols being fol-
lowed in the current version of the simulator, and passed to the thread running the
concerned agent’s code. Since, all the messages are being passed between devices
running on the same host CPU, there is no need for serializing the parameters for
sending messages from one simulator module to another. This removes the latency
in serializing and deserializing of agent data, which takes considerable amount of
execution time in the current version of simulator.

Next, the agent threads receive the sensory information from the corresponding
computational threads of the Kernel and decide what actions to take and send the
action commands to the Kernel. The Kernel gathers messages from all the agent
module threads and broadcasts them to the component simulators. The Kernel
handles these messages in the corresponding computational threads.

The component simulators running on separate devices compute how the world
changes with the updated information received from the Kernel and returns the
result back to the Kernel. The Kernel integrates the results received from the
different component simulators, and broadcasts them to the GIS and the simulators.
The viewers request the GIS to send updated information of the world and display
visually the information. CUDA supports OpenGL and its novel architecture does
a fast rendering on the graphics window.

4.5 Some useful tools provided by CUDA runtime

Passing the information between Kernel and component simulators require data
transfer from one device to another. CUDA provides cudamemcpy() for transfer-
ring data between two devices or between a host and a device. With the Dual
PCI-Express, the bandwidth between the host processor and the Tesla processors
is maximized up to 12.8 GBytes/sec transfer rate and device-to-device upto 100
GBytes/sec transfer rate.

Synchronization of threads at the end of each cycle is done by specifying syn-
chronization points in the kernel by calling the __syncthreads() intrinsic function;
__syncthreads() acts as a barrier at which all threads in the block must wait before
any is allowed to proceed.

Since a number of threads are running in parallel, scenarios may arise when
different threads try to change the values stored at the same memory location
(same environment variables) simultaneously, giving rise to race conditions. This
is a common case when different threads of the different component simulators
attempt to modify the state of the same object in the city. In such cases there

2 Currently serialization needs to be done for transferring information between two sim-
ulator modules running on different CPUs.

RoboCup Rescue Simulator on Graphics Processing Units 7

is a need to do atomic writes and have proper synchronization between threads.
This can be handled using atomic functions provided by the CUDA. An atomic
function performs a read-modify-write atomic operation on one 32-bit or 64-bit
word residing in global or shared memory. The operation is atomic in the sense
that it is guaranteed to be performed without interference from other threads.

The runtime also closely monitors the device’s progress and performs accurate
timing, by letting the application asynchronously record events at any point in the
program and query when these events are actually recorded. An event is recorded
when all tasks, or optionally all commands in a given stream, preceding the event
have completed. This helps in simulating real-time problems which require response
from various entities within a fixed amount of time. Further, it provides a mech-
anism to maintain the simulation clock which is useful for cases when we need to
log the progress of the simulation for handling failures. By copying the data from
the device memory to host memory and using this log information, we can restart
the simulation from the point of failure.

5 Results

For validating the utility of porting the RoboCup Rescue Simulator code on GPUs,
we coded three dummy simulators - traffic, earthquake, civilian - and a dummy
Kernel. Each agent was assigned a data-structure of size 250 bytes for defining
its state. Execution follows the cycle as described in the previous section. Every
agent sends random messages to 1000 other agents in every simulation cycle and
no agents ever die; this is done so as to ensure maximum stress on the simulator
at all time. The component simulators receive GIS and agents information from
the Kernel. These simulators do not compute anything but sleep for 0.25 seconds
before responding to the Kernel so as to give a feel that some computation is being
done by them. The current version of Rescue Simulator executes 500 agents in 1
second per simulation cycle when running on 4 CPUs (1.67 GHz and 2 GB RAM).
In accordance to the current simulation cycle as described in [4], we can reasonably
estimate the time taken by a component simulator to compute the next state of
the world to be not more than 0.25 seconds. Hence, the sleep time is justified. In
the dummy simulator, agents receive the same perceptual information every time
and hence always give a command to the Kernel to move by zero unit. As there
is no change in the state of the world, Kernel computations bring out the same
percepts every time. We ran the simulation with 9 million civilians and 1 maillion
rescue agents.

For experiments we used 5 nVidia Tesla T10 GPUs each with 933 GFLOPS of
processing performance, 1.30 GHz clock-rate and 4 GB of GDDR3 memory at 102
GB/s bandwidth. It has 30 multi-processors with 240 cores, a constant memory of
64 MB, a shared memory of 16kB per block and 16k registers per block.

Each component simulator was assigned one GPU device, one device was as-
signed to the Kernel and the one left was used only for running the agent software.
The GPU devices running component simulators were allotted 2 million civilian
agent threads each to run on them (in addition to computing the corresponding
simulation domain). Rest of the agents were allotted to the device dedicated for
running the agent software. The number of computational threads on the device
running Kernel was set to 5 million. The block size was kept as 512 threads. Grid
size for a device was computed as [(K/512)], where K is the number of agents
allotted to that device.

8 Prashant Sethia and Kamalakar Karlapalem

It took 453 milli-seconds for running one simulation cycle with 10 million
agents, on an average computed over 100 simulation cycles. Scalability provided
is approximately 10* times (107/103) times over the current version of RoboCup
Rescue Simulator. If the current version of simulator was scalable enough to exe-
cute 107 agents, it would have taken 1 x 107/500 = 2 x 10* seconds to complete
one simulation cycle; approximately 0.80 x 2 x 10#/0.453 =3.5 x 10* times speedup
is achieved (0.80 factor comes in because 4 CPUs are compared with 5 GPUs).
Further, a low simulation cycle time of 453 milli-seconds encourages us to model 1
second of real-world clock as one simulation cycle.

5.1 Discussion

GPUs are designed to provide tremenduous concurrency. High performance and fast
memory bandwidth together with light-weight context switching between threads
make it a promising tool for parallelization of modular problems.

Parallelism and modularity is inherent in the conceptual architecture of RoboCup
Rescue Simulator. Computation of percepts for each agent is independent of oth-
ers. The events occuring and its impact on a particular area of the city can be
computed for individual areas separately. Finally, an agent itself is an autonomous
entity with its own intelligence and abilities to take actions. Further, since all GPU
devices running the simulation are ported on the same host CPU, serializing and
deserializing of objects used for sending percepts information is not required. Fur-
ther, messaging between GPUs (Dual PCI Express with 102 GB/s) hosted on the
same processor is faster as compared to between two different CPUs over a Giga-
bit ethernet. These reasons, together with the results obtained, encourage us to
parallelize the RoboCup Rescue Simulator code on fast, scalable GPUs.

6 Conclusion

In this paper, we presented the possibilities of performance and scalability enhance-
ments that can be achieved on porting the current RoboCup Rescue Simulator
architecture on CUDA driven nVidia GPUs. Apart from speeding up the simula-
tion by more than ten thousand times against CPUs, it facilitates a more detailed
and finer-grained simulation with each simulation cycle representing 1 second of
the real-world clock. Another major improvement is that the number of simulated
agents is scaled up to ten million.

Using CUDA has its limitations. CUDA only supports nVidia graphics card
and is not compatible with others (for example ATI graphics cards). Therefore,
our future aim is to develop a framework which can run on a graphics card of any
make and thus build up a distributed system of heterogeneous GPUs. We aim to
utilize this distributed system to develop the RoboCup Rescue Simulator.

References

1. nVidia CUDA home-page : [http://www.nvidia.com/object/cuda_home.html]

2. CUDA Occupancy Calculator :
[http://developer.download.nvidia.com/compute/cuda/ CUDA _Occupancy _calculator.xls]

3. Rahul Sarika, Harith Siddhartha, and Kamalakar Karlapalem - Database Driven
RoboCup Rescue Server - RoboCup, 2008

4. Tomoichi Takahashi, Ikuo Takeuchi, Tetsuhiko Koto, Satoshi Tadokoro, Itsuki Noda :
RoboCup-rescue disaster simulator architecture : RoboCup 2000: Robot Soccer World
Cup IV

5. RoboCup Rescue Simulator Documentation [http://www.robocuprescue.org/documentation.html]

6. RoboCup Rescue Simulator Version 1 [http://sourceforge.net/projects/roborescue/]

