RoboCup 2011
Rescue Agent Simulation Competition
RMAS_ArtSapience Team Description Paper

Amr Labib Hussein, Ahmed Abouraya, Dina Helal, Noha Khater, Mina Fahmy,
and Carmen Gervet

German University in Cairo, Cairo,Egypt,
amr .labib-hussein@guc.edu.eg, [ahmed.abou-raya, dina.hussein,
noha.khater, mina.adel]@student.guc.edu.eg , carmen.gervet@guc.edu.eg

Abstract. This paper describes the contribution to the Rescue Agent
Simulation by the GUC RMAS_ArtSapience team; in terms of the cur-
rent research approach implemented to prepare for the RoboCup 2011
competition. The approach is divided into two parts: clustering and plan-
ning. Fuzzy c-means clustering is used in preprocessing to divide the map
into regions and assign a group of agents to each region. Then path plan-
ning and routing operations are performed using a graph library from the
ECLiPSe constraint logic programming system. The outcome is a path
for each agent in his allocated cluster which is a map. The approach
provides an efficient methodology to divide the work among the different
agents and to efficiently traverse the whole map in order to perform the
rescue operations.

1 Introduction

Rescue planning and optimization is one of the emerging fields in Artificial In-
telligence and Multi-Agent Systems. The RoboCup Rescue Agent Simulation
provides an interesting test bench for many algorithms and techniques in this
field. The simulation environment provides challenging problems that combine
optimization (routing, planning, scheduling) and multi-agent systems (coordina-
tion, communication, noisy or missing communication).

The Robotics and Multi-Agent Systems (RMAS) research group at the Ger-
man University in Cairo (GUC) was established in September 2010. The goal of
the research group is to study and develop Al algorithms to solve problems in
robotics and simulation systems. These fields include computational intelligence,
constraint programming, computer vision, multi-agent systems, and classical Al
approaches. The current research efforts investigate the following research direc-
tions:

e Clustering as a preprocessing step for multiple depot routing.

e Comparison of k-means and fuzzy c-means clustering algorithms.

e Implementation of routing algorithms using constraint programming tech-
nology.



e The use of constraint programming to generate and update routes for path
planning agents.

The GUC RMAS_ArtSapience team is making its first participation to the
Rescue Agent Simulation in 2011. This paper describes the current team’s achieve-
ments in tackling the RAS problem. Section 2 describes our modeling and al-
gorithmic approach. Section 3 describes the agent implementation Section 4
provides some empirical results. And finally section 5 outlines the ongoing tasks
that are underdevelopment.

2  Owur Approach

This section describes the approach we used to address the Agent Challenge.
The first part discusses the use of Fuzzy C-means clustering in dividing the map
into regions. The second part discusses map modeling and path finding using a
Constraint Logic Programming system.

2.1 Clustering using Fuzzy c-means

The c-means clustering algorithm computes a collection of clusters based on a
membership function that we define. In contrast with the k-means algorithm,
it enables one to attach a data point to more than one cluster. The output of
the c-means clustering algorithm is a set of fuzzy partitions with all point in the
data belonging to them with relative membership values. A certain threshold is
applied to the membership values and the final partitions are generated [4].

Clustering is used in this context as it provides a means of distributing the
rescue operation on the different number of agents to cover the whole map.
Fuzzy c-means was chosen as it will guarantee an overlap between the generated
clusters. The overlap is required because it is not guaranteed that the agents
assigned to one region can reach all roads and buildings due to the unexpected
blockades, especially the ones at the edges of each region. The overlap will help
overcoming this problem as agents from different regions will try to reach these
areas from different paths, which will guarantee a higher chance of reaching them
in time.

The first step in the preprocessing is to apply fuzzy c-means on the map. A
list of all roads and buildings is given to the algorithm. The number of gener-
ated partitions is determined by the number of available agents and the map
is clustered differently for each type of agent. The generated partitions repre-
sents regions in the map. Each region will have a group of agents responsible
assigned to it. The agents will then carry their designated operation in its region
as discussed later in this paper.

2.2 Map Modeling and Constraint Programming
Constraint Logic Programming

Constraint Logic Programming (CLP) is a quite recent programming paradigm
with roots in Artificial Intelligence that combines two declarative paradigms:



constraint reasoning and logic programming. CLP has been very successful in
the past 20 years to tackle combinatorial problems in fields such as planning,
scheduling, timetabling, numerical analysis and more recently bioinformatics [2].
Our main motivation behind the use of constraint programming is its mod-
eling abstraction, and the separation it offers between problem modeling and
solving. The main task the user is required to fulfill is to be able to model the
given problem as a constraint problem, in terms of variables, domains attached
to these variables, and the constraints they must satisfy. The constraints are
then resolved through the use of a constraint solver. In our case, we will model a
map as a graph using facilities of a CLP system, called ECLiPSe [3]. This enables
us to use the constraint solving engine associated with graph constraints such
as finding one shortest path between two graph nodes, finding all shortest paths
between a given set of points, discovering regions using breadth first search.

Map Modeling
The following describes how a map is modeled in a CLP setting:

e All Areas (roads and buildings) are considered to be graph nodes.
e The lines connecting neighboring areas are considered to be edges.
e The weight of each edge is its length.

e Every edge is created twice in order to have an undirected graph.

Using the graph model created, it is possible to use the graph algorithms
provided by ECLiPSe to compute the best routes for each agent in its region.
All agents can connect to the ECLiPSe engine using their own graph model and
can dynamically calculate new routes efficiently during the simulation run, which
makes it easier for agents to recalculate paths in case of undesired blockades.

3 Agent Implementation

3.1 Tools and Packages

The following is the list of tools and packages we used in the implementation:

e Java is used to implement the core system and the fuzzy c-means clustering
algorithm.

e Agents are based on the rescuecore2 StandardAgent provided with the sim-
ulator.

e The ECLiPSe Constraint Logic Programming System is used as the CP
engine, mainly the graph_algorithms library. It is a Prolog based system.

3.2 Agents

Figure 1 shows the general agent structure implemented in all types of platoon
agents. The following algorithm explains the general structure followed by the
specifics of each agent.



Agent:
Preprocessing Routing

l Sorted 4 Cluster

Buildings Graph

Minimum
Spanning
Tree
(ECLIiPSe)

Buildings
Tree

Clustering
FCM
(Java)

Shortest Path

(ECLiPSe)

Topological
Sort
(ECLIiPSE)

Fig. 1. General Agent Structure.

— Shared Preprocessing:

The map is divided into regions using fuzzy c-means clustering.

Each region is assigned a group of agents that will be effective to search
through its roads and buildings.

The number of agents per region is proportional to the number of build-
ings and roads in the region.

— Individual Preprocessing:

Each agent retrieves all regions and finds the region it is assigned to.
The agent calculates the minimum spanning tree of the buildings in its
region.

The agent finds the topological sort of the buildings tree.

— Runtime (Think):

Each agent will calculate its route by finding the shortest paths between
the buildings in the order computed in the topological sort.

The agent will follow the route searching for events that requires rescue
actions.

If the route is blocked, the agent will try to find alternative routes or
will skip buildings.

If the agent finished a complete cycle in its region, covering all buildings
and roads, and no events were found that required any action, the agent
will move to a different region and repeats the same process starting
with finding the topological sort of the new region.

If a communication exists, each agent will listen for informative and
query messages (explained in section 4) with events that requires action.
In the case of informative messages, free agents will respond if the event is
within its region. An agent is considered free if it is not doing any rescue



action. In case if query messages, free agents will respond immediately
to events in its region. For events outside the region, free agents will
respond in case they finished scanning their regions.

Ambulance Team

Ambulance teams are interested in finding buried civilians. As each agent follows
its route, it will keep scanning the building for civilians. When buried civilians
are found, the rescue operation will begin. Each agent will keep track of unvisited
buildings. Once a building is visited, it is removed from this list. If a building
has several buried civilians, the agent will send a query message and keep track
of this building to give it higher priority in the rescue operation. If all buildings
are visited and no more civilians need to be rescued, the ambulance team does
not have to do any more work.

Fire Brigade

Fire brigades will follow the same plan as the Ambulance Team but they will not
need to enter the buildings, except when necessary. Each agent will scan all the
buildings in its route and check for fires. Once a fire is found, the agent begins
extinguishing. When it runs out of water, the agent goes to the nearest possible
refuge to refill, keeping in mind any location it has passed that was on fire. If the
agent finds several buildings on fire in its line of sight, it will consider the area
to have a spreading fire. It will send a query message to ask for help controlling
the spreading fire.

Police Force

Police forces performs an extra step in both preprocessing and runtime. It was
noticed that many agents are stuck at the beginning due to collapsed buildings
and blocked roads. To solve this problem, Police agents start by clustering the
initial locations of all fire brigades, ambulance teams, and refuges, in addition
to clustering the map. Each agent is assigned to two clusters: one for the agents
and refuges and the another for the map regions. Police forces start by clearing
the roads to agents and refuges locations to make sure that all other agents can
move freely (unless initially buried) and that all refuges are reachable. After this
operation, each agent goes to its designated region in the map and start clearing
the roads. Police forces will respond to query messages sent by stuck agents in
their regions. If an agent’s region has no more blockades, the agent can move to
another region and/or respond to query messages in different regions.

4 Communication Model

Agent communication is built on top of the channel communication model pro-
vided by the rescue simulator. Each agent subscribes to a channel designated



only to agents of the same type. Communication messages are based on an ab-
breviated form of the small Agent Communication Language (sACL) [6]. The
types of messages used are as follows:

5

Informative Messages inform<id, source,message>: intended to inform
other agents of sensed fires, blockades, and buried civilians. Informative mes-
sages are sent by agents that detect events they cannot act up on. For ex-
ample, when a police force agent senses a buried civilian, it will send the ap-
propriate informative message to the channel the ambulance team should be
listening to. On the other hand, a police force agent will not send informative
messages to other police force agents when it senses blockades. Informative
messages do not require any acknowledgment and are only broadcasted once.
Query Messages query<id,source,message>: intended to ask for help
from agents of the same type as the sender. Query messages are sent when
agent realizes that it cannot perform a rescue action on it’s own. For example,
an ambulance team agent may find itself in a building with many buried
civilians. The agent will send query messages to all ambulance teams asking
for help. Query messages are also sent when an agent is stuck and needs
police forces to clear the blockades around it. Query messages are sent three
times to guarantee message delivery and requires acknowledgment. If the
agent does not receive an acknowledgment in a specific amount of time, the
message is resent again.

Acknowledgments acknowledge<id,source>: intended to acknowledge a
response to a query message with the same ID. When an agent receives a
query message, it will send an acknowledgment if it decides to respond to the
query. If the agent is not capable of responding, it will not send any reply.

Test Runs

Most of the test runs were made using the 2010 competition maps and scenarios.
Test runs were made on a single machine with the following specifications:

CPU: Intel i7 1.6 GHz

RAM: 6GB

OS: Ubuntu 10.10

RoboCup Competition 2010 Rescue Simulator

Figures 2 and 3 show the final state of the map Kobel in the map viewer

and the final score in the score chart.



Time: 300 Score: 36.73

Fig. 2. Final state of Kobel map in map viewer.

Score

70k
65
60
55
50
45
40
35
30
25
20
15
10

Score

0 25 50 75 100 125 150 175 200 225 250 275 300
Time

— Overall — Civilian component — Civilians alive  Civilian health (proportion) — Sqrt(building damage)
Building damage

Fig. 3. Final score of Kobel map in score chart.



Table 1 shows the results obtained in some of the 2010 competition maps.
The second column shows the results we obtained in each map. Third to fourth
columns shows the scores achieved by the top three teams in each map including
the name of each team. The last column shows the rank expected to be achieved
if our team had participated in the 2010 competition in the mentioned maps.

-~ BRM _/.&S Top 3 Expected
ArtSapience 1 2 3 Rank
Kobel 36.73 (IAi/iffchue) (}3{?_3?1?;) (31\6/H§L2LS) 4
Vel 4.681 (ROS c‘)iOféUT) (fé’_?gie) (i}[(l):?é) '
Berlinl| ~ 61.777 (IAgfsgs?:ue) (SB(?eS é:jiour) (fi?ﬁ?)?e) 2
Kobe2|  10.128 (flul-‘(%)ii) (Robgci)%OIgUT) (Zfﬁzlgise) 2
VC2 18.311 (Z?]%fg(ie) (SEIlj(,)ﬁS(?sun) (IAll\/?Sjszcue) !
Table 1. Results obtained in some 2010 maps.
References

1. RoboCup Rescue Website. http://sourceforge.net/apps/mediawiki/roborescue/

2. Rossi, F., Van Beek, P., Walsh, T., Handbook of Constraint Programming. Elsevier,
Foundations of Ariticial Intelligence.(2006), ISSN 1574-6525

3. Apt, K.R., Wallace, M.G., Constraint Logic Programming using ECLiPSe, Cam-
bridge. (2006), ISBN-13 978-0-511-34966-9.

4. Bezdek, J.C., Ehrlich, R., Full, W., FCM: The fuzzy c-means clustering algorithm,
Computers and Geosciences, Volume 10, Issues 2-3, 1984, Pages 191-203, ISSN 0098-
3004, DOI: 10.1016/0098-3004(84)90020-7.

5. Psaraftis, H. N., Dynamic vehicle routing: Status and prospects, Annals of Opera-
tions Research, Springer Netherlands, Volume 61, Issue 1, 1995-12-01, Pages 143-164
ISSN 0254-5330, DOI 10.1007/BF02098286

6. Pitt, J., Mamdani, A., Designing Agent Communication Languages for Multi-agent
Systems, Multi-Agent System Engineering, Volume 1647, 1999, Springer Berlin /
Heidelberg



