
RoboCup Rescue 2011 - Rescue Simulation
League Team Description
Epicenter (UFRGS, Brazil)

Daniel Epstein and Ana L. Bazzan

Instituto de Informática
Universidade de Rio Grande do Sul, 15064-Porto Alegre, RS, Brazil

{depstein,bazzan}@inf.ufrgs.br

Abstract. This paper describes the main features of the Epicenter sim-
ulation team. We describe the strategies used for each type of agent,
as well as how each task type was handled. Our main approaches are
based on i) use of wave propagation to find the shortest path for each
agent when moving towards its goal, and ii) team formation based on
coalitions. Since it is well-known that computing the optimal coalition
structure is unfeasible given the time constraints, we use an heuristic ap-
proach that allows us to prune certain coalitions. Moreover, this process
is done in a decentralized way, which is appropriated for scenarios where
communication is not possible.

1 Introduction

The Robocup Rescue League is more import today than ever. Natural disasters
such as the one that has just happened in the northeast of Japan shows the
importance of having robot teams to perform rescue tasks or tasks that are
dangerous to humans (such as work on damaged nuclear plants).

Since this is our first competition in the Robocup Rescue League, in the
present paper we provide details about the approaches that are used in order
to explain how our agents are built, as well as the main strategy underlying
them. Regarding the former, the main approaches that are used here are wave
propagation (as in [3]), and coalition formation for task allocation (used by
us in [1]). Wave propagation aims at representing the environment topology
and finding paths from agents’ current locations to a goal location. Coalition
formation is used for team building. Since it is well-known that computing the
optimal coalition structure is unfeasible given the time constraints, we use an
heuristic approach that allows us to prune certain coalitions. We calculate the
value of a task (explained on section 3) and ignore those with low value. Also,
several restrictions are imposed for an agent to participate in a coalition. Once
the coalition structure is formed, we assign each agent to it designated task
(more details on section 5). Moreover, this process is done in a decentralized
way, which is appropriated for scenarios where communication is not possible.

The rest of this paper is organized as follow: Sections 2 and 3 describe our
path planner using wave propagation and how to assign value to the tasks,
respectively. In Section 4 we describe how agents act in this environment using
the approaches previously presented. Section 5 discusses the issue of coalition
formation and selection, while Section 6 summarizes our conclusions.

2 Path Planner - Dual Wavefront Propagation

The path planner used here is similar to the one used in [3]. Before presenting the
path planner, we introduce the terminology used. Consider a connected graph
G = (V,E) comprised of a set of vertices V and a set of non-oriented edges E.
G is extracted from the given city map.

Agents use the i-neighborhood of a vertex to determine the path to reach a
specific position from its current position. We define an i-neighborhood Ni(v) as
the set of vertices that are reached by any path with length i from v as in Eq. 1
where d(u, v) corresponds to the length of shortest path between u and v, with
d(u, v) = d(v, u).

Ni(v) = {u ∈ V |d(u, v) = i} (1)

Initially, the agent determines its position in the graph; then it propagates
a specific value to the other vertices in its i-neighborhood. For instance, if the
agent is at vertex v, then each vertex u ∈ Nm(v), for m = 1, 2, . . ., stores a
propagated value pv(u) = m. In this case, the value pv(u) indicates the distance
to vertex u from vertex v, i.e., pv(u) = d(u, v), assuming that all vertices have
the same distance between them. When this is not the case, the new propagation
start by the vertex with lowest d(u, v).

Using this method, the computation of a path is straightforward. The agent
determines the vertex associated to its current position v and the goal position,
g. The path P ⊆ V is built from the vertex g. This path corresponds to a
sequence of vertices P = {u0, u1, . . . , ud(v,g)}, where u0 = v, ud(v,g) = g and
|P| = d(v, g) + 1.

Each vertex u in this path is determined using its propagated value, pv(u),
from vertex v. For instance, if all vertices have equal distance, then
ui = argmin(a,ui+1)∈E

pv(a) with i = 1, 2, . . . , d(v, g)− 1.
If an unexpected event happens while an agent is moving, it must re-plan

(while also not taking the previous path into account). To solve this, we divide
the planning path in two parts. Instead of planning only from the agent position,
it begins from both the agent and the goal positions. We determine the vertex
v and g that are associated to the current agent position and goal position respec-
tively. After, we repeatedly computeN1(v),N1(g),N2(v),N2(g), . . . ,Nm(v),Nm(g)
until

(

Nm(v) ∩ Nm(g)
)
⋃

(

Nm(v) ∩ Nm−1(g)
)

6= ∅.

The cardinality of set I = {u | u ∈
(

Nm(v)∩Nm(g)
)
⋃
(

Nm(v)∩Nm−1(g)
)

}
indicates the number of candidate paths from v to g. To compute a path, initially,
we choose a vertex x ∈ I and compute the path from v to x. After, we compute
a path from g to x.

We merge these paths into a unique path P = {p0, p1, . . . , pd(v,g)}. The set
of vertices from p0 to pd(v,x) correspond to the path from the agent position to
common vertex x. That is, pi = ui, for i = 0, 1, . . . , d(v, x), whereas the vertices
from pd(v,x)+1 to pd(v,g) are associated with the vertex of the path from g to x in
inverse order. This method handles dynamic events in a more efficient way than
the simple wave propagation. For instance, consider that an agent is following
the path and finds a blockage near vertex v. In this case, the agent must re-
plan only the path from v to x. The path from x to g is not recomputed and,
therefore, planning time is saved.

In order to improve the movement of a fire brigade around the scenario, we
also consider the path from each possible task to all others. All tasks that are
close to the first task that the agent has to execute will also be part of this
process and the resulting path will lead the agent to the first task in a path
that makes it easier to move to the subsequent task. Hence, once the first task
is solved, it will be easier for the agent to move to the next one and so on.

3 Task Value

Each task in the Roboup Rescue have a different value (contribution) for the final
score. Also, it affects the system in a different way. Choosing to perform task
a or task b could entirely change the outcome of the simulation. Also the order
with which tasks are performed is key. Therefore, is very important to be able
to choose the correct task to perform first. We have developed several metrics
that indicate how important one task is. Comparing the values of different tasks,
agents can choose the one that is the most important.

3.1 Task: Buildings

Choosing which fire to extinguish first is a very tricky question. There are several
factors that must be taken into account. Sometimes, its better to lose one single
building than to lose a whole block. That’s why our main idea is to prevent
the fire from spreading instead of trying to save every building. Our metric for
computing the value of a building (Vb) is based on the follow variables:

– size of the building: represents the total area of the building. A larger build-
ing has a more direct impact on the final score, but its is also harder to
extinguish. In order to prevent the fire from spreading, the agent must give
priority to the smallest one.

– degree of destruction: a building that is close to full destruction receives less
priority.

– neighboring buildings: a single fire may spread to an entire block. Hence, we
must consider the entire block when choosing a goal. We consider the total
area of each neighbor building, as well as how destructed it is. Neighboring
buildings that are on fire are not considered, since a building cannot spread
fire to another building already on fire.

3.2 Task: Roads

Roads are difficult to evaluate since they do not have a direct effect on the fi-
nal score. Metrics related to roads must be based on how a blockage will affect
the movement of the agents. If a crucial portion of the network is unreachable
because it is blocked, then links in this portion must have priority over other
roads. Also, main roads are much more used and must be unblocked first to
ensure that agents may move freely through the map. Another important infor-
mation related to roads is how many lanes they have. Usually arterial roads in a
city are those with a high number of lanes. Therefore, it is assumed that roads
with the highest number of lanes are the most important ones. It is necessary
to unblock at least parts of these roads first, even if they do not end up being
completely unblocked.

Finally, the most important information regarding roads is how close they
are from a refugee or a fire station. It is crucial to clean those roads that lie near
important buildings, since these areas have a high traffic of agents during the
whole simulation.

3.3 Task: Civilians

Although a civilian has many attributes, it is not difficult to formulate a metric
for it when regarded as a task. A major issue is to minimize the number of fatal
victims by the end of the simulation. To do so, one must consider the civilian
hit points that indicate how long it can survive. Another issue that contributes
to the value of a civilian task is how buried this civilian is, which indicates the
number of cycles one ambulance team will take to save this civilian. These two
attributes can be used to formulate what will be called ”expectation of life” (Vc),
that is how many cycles a civilian can remain buried before dying.

To find a civilian, one may see or listen to it. If some agent has seen or heard
a civilian, that agent records the location and time step the observation was
made. If this agent is not an ambulance itself, once it finds an ambulance center,
it will inform this center about the location of known civilians, which then passes
the information to an ambulance, helping it to find an injured civilian.

4 Agents

Platoon agents use the value of each task to determinate which one to do first.
Each agent chooses a task for itself or adopts the one indicated by a central (if
there is any). In the first cycles, the civilian makes this decision alone, without
considering other agents. After, the central computes which group this agent
belongs. This is the case when communication is used/allowed. Otherwise the
agent may make this decision by himself.

All agents try to gather as much information as possible. Each time an agent
meets another one, information is shared, together with the time step when this
information was obtained. To avoid having too much communication, only the

newest information is shared. Information that is older than 10 time steps is not
transmitted.

The method used for communication is the use of say. Each time two agents
meet, if the cycle is an odd number, the agent with highest ID will be the one
transmitting the information. Otherwise the agent with lower ID will be the
sender. This way, if two agents meet for more than one cycle, both can send
information. If they meet for only one cycle, then the flow of information follows
a random pattern.

The information shared is coded by the Huffman code. If it is not possible to
send the whole message an agent wants, it will first send the information that
directly affects its type (i.e. buildings on fire for FB, blocked roads for PF , or
civilians injured for AT).

4.1 Agent: Fire Brigade

The first cycles of the fire brigade (FB) are used to extinguish as much fire as
possible. It is very important that a FB moves quickly in the beginning of the
simulation so the fire does not spread. After 20 cycles, this agent tries to reach a
fire station and determines whether it is blocked or not. If it is blocked or cannot
reach a fire station, it contacts the central or any other agent to request help
from a police force.

Choosing which building task to handle first depends on Vb (as defined be-
fore), as well as the distance from the FB to the building and the agent ability
to extinguish a fire. If a FB cannot extinguish a certain fire, it tries to extinguish
one in a smaller building.

4.2 Agent: Police Force

At first, all police forces (PF) have one task: to move to the nearest refuge and
fire station they can find, and unblock the path to them. This task will take as
many cycles as necessary.

After this initial task is completed, the PF priority is to unblock any agent
trapped. This can be done by receiving messages that have the location of an
blocked agent, or when it realizes that some agent is not moving. Once a request
from a trapped agent is received, the two closest PF move towards that agent
in order to quickly release it. They will work together, thus reducing the time it
takes to unblock a road.

Finally, once these two kinds of tasks are handled, each police force tries to
unblock other roads. As mentioned, they do not need to completely unblock a
road. Using the previously defined metrics, police forces decide which are the
priority tasks. The result of the metric is combined with the following heuristic:
All roads that are close to a fire spot have higher priority. This way, roads
closest to the highest number of fire spots will be unblocked first. This provides
fire brigades a higher number of possible paths.

4.3 Agent: Ambulance Team

Ambulance teams (AT) must balance their resources so that the highest possible
number of civilians is saved before it is too late. The ambulance team uses the
metric Vc combined with the number of cycles it takes to reach each civilian to
decide who to save first. Ambulances prioritize those civilian that can be saved
within the available time, and that have a lower Vc. Also, civilian who are close
to another civilian also have priority. If there is a group of civilian close to an
AT , they probably have a much higher priority than those civilians that are
isolated or very far.

Not all civilian saved will be immediately taken to the refuges. An AT will
perform rescue tasks first. After, when there is none left to be rescue, civilians
will be delivered to refuges. Hereby, those severely injured have priority.

Another way for an AT to choose its task is by receiving a message from the
centrals. These messages have a higher priority and the task received must be
executed. This is so because sometimes a civilian cannot be saved by only one
ambulance and then the central has to send more than one to do this rescue.

4.4 Agent: Centrals

The main objective of a central is to gather information from all agents and
coordinate the flow of information and their actions. It also works as a task
allocator once it has information about all agents and can provide a better
overview of the whole scenario. It can also indicate the existence of some high
priority task and request help from multiple agents.

Once communication by radio affects the score, not every single new data
will be sent. Rather, this kind of communication is used only a given quantity
of data is gathered. It is also used to decide which coalition structure is formed,
as described next.

5 Coalition Structures

As mentioned, the generation of all possible coalition structures (CS) is ex-
ponential in the number of agents. This is an important issue because it was
demonstrated that finding the optimal coalition structure is NP-complete [5].

In the Robocup Rescue the number of coalition structures is affected not only
by the number of agents but also by the number of tasks. Hence, low-priority
tasks are not considered in the set of coalition structures. From the point of
view of an agent, some tasks may also be discarded because the agent either
has no resources to perform it, or tasks are located far away from it. This way
agents that cannot be allocated to important tasks are removed from the set
of agents to form coalitions, further reducing the number of possible coalition
structures. After we find a reduced number of agents and tasks, the search of
the actual optimal coalition structure is performed by the anytime algorithm
proposed in [4]. We also remark that coalition structures are generated only

considering ambulance teams and fire brigades. This stems from the fact that
police forces do not need to work in groups (they can perform their tasks alone
and are not hardly constrained by time).

To ensure that the corresponding central of agents will be able to generate a
good coalition structure, it must first discard most of those possible CS’s that
are not valid. The central cannot find an efficient CS when there are too many
agents because it has a very limited time to search for it.

The main principles underlying our method (reducing the number of possible
CS) are based on the idea that tasks having low value, plus agents that cannot
complete a task, should not be considered in the search for a CS. The number
of tasks is at most the number of possible agents. If there are more tasks than
this number, those tasks with with the lowest values are ignored. To prune the
number of agents we disregard those that are many cycles away from the most
valuable tasks and those that cannot deal with the given tasks (for instance, a
fire brigade that does not have enough water on its tank). Further details can
be found in [1]. Due to the dynamic nature of the task allocation process, the
set of CS’s changes every 10 cycles.

It is important to remark that there are many scenarios where the commu-
nication between the central and the agents is not possible. For these cases we
have developed a strategy to form groups of agents that is communication-free.
It is a two-cycle strategy. In the first one, agents contact any other agent in their
range (if any) to update its knowledge base (i.e. agents memory). In the second
cycle, agents rely on their knowledge bases to assume where the other agents
are, and what they are doing.

Each agent keeps track of where others are. Using this information, they
assume an agent’s location and which tasks have already been completed. With
a given probability ρ, an agent assumes what are the other agent’s priority tasks.
The more recent the information about a certain region, the most reliable is this
information.

Once an agent has a hypothesis about where other agents are, it uses the same
algorithm that would be used by the central for generating coalition structures,
and decides which is the most probable CS to be formed.

When no assumption of this kind is made, this means the agent has not
enough information about the others and ignore them when trying to find a
coalition structure. This drastically reduces the number of possible CS’s.

After deciding which task to perform, each agent moves towards its goal. If it
realizes that no other agent from the assumed coalition is also committed with
its task, it tries to change task deciding which is the best task to perform in an
isolated way. It also removes from its knowledge base those information that led
it to make the previous assumption (for example, a building that was thought to
be on fire but is not). In case the agent manages to contact other agent from its
assumed coalition, these agents exchange information and try to act together for
the next coalitions by increasing the value of those CS where they are together,
until one of them has to leave (to transport a civilian to a refugee or refuel the
tank of water).

6 Results and Concluding Remarks

In [1] we presented results for a similar strategy (henceforth DAS), based on
coalition structures. The following results refer to the Kobe map, using version
0.49 of the simulator. For comparison, three other algorithms were used: LA −
DCOP ([6]), Swarm−Gap ([2]) and a greedy agent. Table 1 shows the results.

Table 1. Scores for version 0.49

DAS LA-DCOP Swarm-Gap Greedy

70.28 ± 6.94 49.69 ± 6.31 44.97 ± 1.76 43.78 ± 7.19

Since that publication we have improved our agents in many aspects and have
also added new strategies to make them even more competitive. It is important
to note that in [1] our focus was only on the coalition structure and we did not
used other strategies described here (e.g. the decentralize coalition assumption).

References

1. Daniel Epstein and Ana L. C. Bazzan. Dealing with coalition formation in the
RoboCup Rescue: an heuristic approach. In Proc. of the 3rd International Con-
ference on Agents and Artificial Intelligence, volume 2, pages 717–720, Roma, Jan.
2011.

2. Paulo R. Ferreira, Jr., Fernando dos Santos, Ana L. C. Bazzan, Daniel Epstein, and
Samuel J. Waskow. Robocup rescue as multiagent task allocation among teams:
experiments with task interdependencies. Journal of Autonomous Agents and Mul-
tiagent Systems, 20(3):421–443, May 2010.

3. Lynne E. Parker, Ben Birch, and Chris Reardon. Indoor target intercept using an
acoustic sensor network and dual wavefront path planning. In In Proceedings of
IEEE International Symposium on Intelligent Robots and Systems (IROS 03, pages
278–283, 2003.

4. Talal Rahwan, Sarvapali D. Ramchurn, Viet Dung Dang, and Nicholas R. Jennings.
Near-optimal anytime coalition structure generation. In Proc. of the Int. Joint
Conf. on Art. Intelligence (IJCAI 07), pages 2365–2371, January 2007. available at
http://ijcai.org/proceedings07.php.

5. Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and Fernando
Tohmé. Coalition structure generation with worst case guarantees. Artificial Intel-
ligence, 111(1–2):209–238, 1999.

6. Paul Scerri, Alessandro Farinelli, Steven Okamoto, and Milind Tambe. Allocating
tasks in extreme teams. In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit
Kraus, Munindar P. Singh, and Michael Wooldridge, editors, Proc. of the Fourth
International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 727–734, New York, USA, 2005. ACM Press.

