

RoboCupRescue 2013 – Rescue Simulation League
Team Description

<ZJUBase (P.R.China)>
 Institute of Cyber-Systems and Control

Zhejiang University,P.R.China

liuxiaodoubao@126.com

 http://www.nlict.zju.edu.cn/zjubase/index.html

Abstract. In this document, we describe some specific features of ZJUBase

rescue simulation team applying for RoboCup 2013. Model building and algo-

rithm implementation of the main aspects of Rescue Simulation are discussed.
Flexible software architecture, multi-mode path planning, self-adaptive com-

munication model, roads classification, partition algorithm, agents strategy and

some other primary technologies are depicted in detail. As we have participated

in RoboCup 2012, this document considers more of the major updates we have

made from the TDP of 2012 [1].

1. Introduction

The RoboCup Rescue Simulation environment is of great social value and it

provides a platform for the development of algorithm design, artificial intelligence,

statistical learning and data mining. To achieve a better performance from our last

version, we reconstruct most of our system architecture and add many modern

algorithms to make better and better agent strategies. Most of our codes were

refactored to reduce coupling between different Jobs and Tools. A roadmap-based

dynamic partition algorithm was used to let our agents have much more powerful

cooperation ability. Communication model is also updated, as we add an error-

correction algorithm to increase the reliability.

 ZJUBase has been devoted to Agent Competition since 2002. This year, a total of

5 students prepared for this competition. We divide our work into 5 parts: Police force

agent strategy, Ambulance Team agent strategy, Fire Brigade strategy,

communication and partition.

2. Software Architecture and Tools

Our architecture gains more flexibility, extensibility, testability and reliability, and

reduce the coupling between components. This Software architecture, showed in Fig.1,

consists of following main components:

 JobBasedAgent: Agent class derived from StandardAgent, including all

necessary information used by our own strategy. Our main implementation is

called “Job based”, which means we divided all agent action into several

different jobs, an agent will choose one job to execute in each time step.

 ScaleJob: We use job to deal with different agent situation. Some jobs are

common but others are designed for specific agent type. Fire brigades will use

GetWaterJob, while police forces may use SaveOthersJob.

 ToolKit: Some jobs may use complex algorithms or information managers to

assist their command decision, these are called tools. Some important tools are:

CreateJigsawTool, CreatePartitionTool, HistoryTool, etc.

http://www.nlict.zju.edu.cn/zjubase/index.html

 LiaisonManager: We have designed a very tight communication model in

case the channel situation is bad. This “Liaison” system encode every message

into bit array and regroup them to bytes.

3. Job selector

All of the agents are job based, which means we firstly search for all job spots that

agents can do, then distribute them to each agent. And each agent has a list of jobs to do

at a time. We divided the jobs into several types, StuckJob, SaveSelfJob,

SearchPartitionJob and so on.

StuckInRoad/StuckInBuildingJob: These jobs have the highest priority, as the

agent may be stuck in burning building or blockade. Generally, Agents will move

smoothly, it will not choose path will too much blockade. But sometimes it may be

trapped by the blockade on Road. To avoid this situation, we design

stuckInBuildingJob and stuckInRoadJob. If agent thinks I am trapped, it will choose

a point doesn’t cover blockade, and try to get out of the trap. If failed for many times,

agent will call PF for help.

SaveSelfJob: When agents get hurt, they will go to refuges if their damage is severe

enough.

SearchPartitionJob: Agents will be assigned into different partitions so that we can

sense the most changes of the whole world. When there is no specific jobs need to be

done by an agent, it will start patrolling in its own partition. We also design a set of

JobBasedAgent

Job
Selector Job 0 Job 1 Job 2 Job 3 ···

Config

WorldModel ToolKit CommKit

Path planning Tool

History recording Tool

Partitioning Tool

JobState

Behavior
Sequence

Behavior 0 Behavior 1 ···

Job distributing Tool

City patrolling Tool

···

Encoding

Channel
Selecting

Compressing

Error-
correcting

···

ChangeSet
Messages

input

Commands Messages

output output

Figure 1 ZJUBase Software Architecture

algorithms to choose the best patrolling path, considering the importance of different

buildings, partition condition and other information. For example, PF will check if

there are roads I have never been to, neither have other PFs, if there is, PF will go to the

farthest place.

Finally, the job selector will consider all the possible jobs and choose the most

important one, and then the agent will execute several behaviors of that job. It may take

several time steps to finish, and the current job may also be interrupted by other much

more important job.

4. Message encode and error-correction

Communication condition varies between different maps, and it is vital for

our agents to build a self-adaptive communication model which consists of every

channel’s real receiving rate detection and dynamic channel subscription and

optimized message sending policy. Implementation of above features is detailed in

the following.

Channel Assign. In the first cycle when agent commands are no longer ignored,

agents begin to subscribe different channels and send detecting messages. In the

second cycle, agents receive messages from the subscribed channels and analyze

each subscribed channel’s receiving rate. And to make this information fully shared,

every agent will send the condition messages to every channel in the same

way that detecting messages are sent. In the third cycle, agents collect condition

messages and the total receiving rate can be calculated from these messages. Thus

agents will have a real bandwidth for every channel which will be used in the channel

assign process, and can use this information to assign different channel to different

type of agents.

Encode & Decode. To shorten message length, messages are encoded and

decoded on bit level rather than byte level. To further shorten the length of message,

different properties are handled in different ways. For example, codec on damage and

hp will take the perception precision into consideration; coding on agent id is the

index of an agent’s id order rather than the real EntityID. Every message is encoded

with a head field followed by several ordered message property fields. To simplify

the coding of messages, Java annotation is used to mark the order of message

properties.

Hamming Code. To make this model more reliable, Hamming code [2] was also

used. Its hamming distance is 3 so that it can detect and correct any one-bit error. It

needs m extra parity bits to encode 2m-m-1 data bits, which is the more efficient if our

data bits number is larger. Below is a sample graph showing how hamming code

works.

Bit position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

Encoded data P1 P2 D1 P4 D2 D3 D4 P8 D5 D6 D7 D8 D9 D10 D11 …

Parity
Bit

Coverage

P1 X X X X X X X X
P2 X X X X X X X X
P4 X X X X X X X X
P8 X X X X X X X X

To check for errors, check all of the parity bits. If all parity bits are correc t, there

is no error Otherwise, the sum of the positions of the erroneous parity bits identifies

the erroneous bit. For example, if the parity bits in positions 1, 2 and 8 indicate an

error, then bit 1+2+8=11 is in error. If only one parity bit indicates an error, the

parity bit itself is in error.

Actually, to gain a better performance, we use the extended hamming code system,

which add another overall parity bit. The code can detect any two-bit error while

correcting any one-bit error, or detect up to 3 errors if the decoder does not attempt to

correct errors.

There are three kinds of noises in RCR system now: dropout noise, failure noise

and static noise. The hamming code implementation can only solve the last one. For

other two noises, we will send some high priority messages several times to

guarantee that the communication is reliable.

5. Roads classification

As there are usually so many roads in one map, it’s hard for us for find ways to get

some places or to find where the target is. To solve this question, we reduce the

number of “roads” by classify them according to its position. We divide them into

three different kinds. One is called the entrance, for this kind of roads are connected to

the buildings, so if you’d like to go into the buildings you must pass these roads, the

second one is called avenue, for they can be combined into a long street, the rest is the

cross, these roads are connected to more than three roads. After the classification, we

make a connection of them to form Jigsaw Avenues, Jigsaw Crosses. For different

targets (like the buildings we may want to observe or extinguish, the roads that need

cleaning), we firstly find out where they are, and then, we add them to their neighbor

Jigsaw Avenues or Jigsaw Crosses (If the spot is connected to two Jigsaws, it’s Ok,

because we may choose the one which has a smaller Jigsaw number), finally, here

come the Objective Jigsaw Avenues or the Objective Jigsaw Crosses. As there may be

many jobs added to one Objective Jigsaw Avenue or one Objective Jigsaw Cross, it

will be easy for our agents to finish all the jobs along one avenue or cross. It can save

more time as we just need to discuss who is more fit for one Objective Jigsaw Avenue

or one Objective Jigsaw Cross once and for all, on the other hand, after we finish all

the jobs along those roads, we may let the agents check if there are other emergencies,

like the other roads along the avenue may be blocked or there are other buildings that

catch fire and we didn’t notice beforehand, so these agents will still keep observing the

avenue or cross to make sure there aren’t more emergencies! The whole structure is

like the flowchart below:

Objective Jigsaws:

Jigsaw Elements:

Marks for
Roads:

Job Spots Creator

Jigsaw Connector

Road

Jigsaw Type Marker

Entrance Avenue Cross

Jigsaw Avenue

Jigsaw Cross

Objective
Jigsaw Avenue

Objective
Jigsaw Cross

Figure 2 Jigsaw structure for road classification

These are viewers for our division strategy, crosses and avenues are correctly

recognized, which can be used to speed up our path planning algorithm.

Figure 3 Road classification for Pairs (part) and VC maps

6. Partition Algorithm

As agents are distributed in the world and events around agents will be shared via

communication, it is vital for agents to disperse so that more information can be

gathered and agents can make better decisions.

Partition algorithm is mainly used to serve the task assignment, exploration and

agent collaboration. As the performance of partition algorithm in our previous version

is not very satisfactory, we implement another roadmap-based partition algorithm. It

will satisfy following conditions:

 Every partition is a convex polygon, and the sharp is close to circle (not long

and narrow).

 The boundary of each partition must be main roads.

 The variance between different partition’s areas should be small.

 Partitions should not be too small. It must contain at least one circuit inside the

partition, so that an agent can patrol along this path.

We create partitions on our Jigsaw layer, which is much higher than Area layer and

it can also be ensured that connected buildings will be assigned to the same partition.

As for partition number, now we use the square of the number of agents. This may be

changed in the future. What’s more, the number of agents may be changed when an

agent died, so our partition implementation should also be changed smoothly, which

means all agents can move little to switch to its new distributed partition. An example

is shown in Fig.4.

Figure 4 Map partition for Eindhoven

7. Agents

7.1 Ambulance team

We add a new system called ‘rest in peace’. This system runs when ambulance team

start rescuing agent. It is designed to judge the agent under rescuing can be rescued

successfully or die during the rescuing. If ambulance team thought it has little

possibility to rescue successfully, ambulance team will give up. This system skips

those people who can’t be rescued to save time for more valuable people. Because of

what AT see (HP damage) are not accurate, but agent under rescuing himself can know

the exact value. So when AT is rescuing other agent, we make agent himself to tell the

AT how long he will live to judge he is worth rescuing or not.

We also made a new cooperating strategy for ambulance teams. For each map, we

calculate a number to limit the cooperation scale. Ambulance team will choose its

target in a smarter way, so there won’t be too many ambulance teams rescuing one

target, ambulance teams can rescue as many people as possible.

7.2 Fire brigade

In our previous version we have already use many algorithms here, such as fire

predictor and convex hull, now a pre-extinguishing strategy is also added.

Based on our powerful fire simulator component, we enhanced the function of

estimating water quantity. Now our fire brigades are able to extinguish with minimized

water required. Yet they are smarter on choosing target based on different situations.

At the beginning of the whole procedure, we acquaint agents with the basic

information and one set of most useful parameters, based on which they can estimate

importance of each fired building and choose the best strategy. Besides, some tools are

further optimized. In our previous version of convex hull, we decided the distance

towards convex hull using center of hull, in this version we approach it using the rim

of hull instead. And in fire partition, we now add consideration of key building

(buildings located at the rim of block in connect with another block). This

improvement helps to provide a more steady performance to fire brigades.

7.3 Police force

We optimize the priority of tasks for police forces and enhance the cooperation

between ambulance team and police force. We also use new designed communication

protocols to make them cooperate in a more efficient way.

We divide PFs’ jobs into three levels of priorities, which are High, Mid and Low. In

the jobs of high priority, there are saving ourselves (means going to the refuge to

reduce damage), making sure the refuges can be access (means there aren’t any

blockades in front of the refuge, so that agents can get in there), also, there is one

emergency we need to deal with, these are helping other agents when they are stuck by

the blockades. Mid and Low level groups contain jobs like different kinds of

exploration (for fire, for blocked roads and for civilians). In this version, we make the

exploration saving more time, for we don’t make the agents enter the room as what we

did in our last version, instead, we just make sure, they can see what’s in the building.

In that way, we may save a few time steps so that PF agents can do more jobs.

About the new model of Police force clearing, we developed a new model for police

force to check which point to clean. First of all, we divide the road into 3 parts: right

part, middle part and left part. Then we will see if the blockade covers all the three

parts, if so, then we can decide that the road isn’t passable.

Figure 5 decide whether the road is passable

(left: impassable right: passable)

8. Acknowledgements

At last, we would like to thank all of the server developers’ team for maintaining

the rescue simulation server and for their technical support; thank RoboAKUT and

SEU-Redsun and other leading teams for their source codes which inspire us a lot.

Thank our seniors Yang Genmao, Feng Huan and Jin Yifan for their selfless help in

many aspects.

9. References

[1] ZJUBase TDP 2012

[2] Hamming code – Wikipedia http://en.wikipedia.org/wiki/Hamming_code

[3] Visibility graph – de Berg, Mark, van Kreveld, Marc, Overmars, Mark, Schwarzkopf,

Otfried, Computation- al Geometry, Springer-Verlag, 2000
[4] A* search – Hart, P. E., Nilsson, N. J., Raphael, B. "Correction to ‘A Formal Basis for the

Heuristic Determination of Minimum Cost Paths’". SIGART Newsletter, 1972, 37: 28–29

[5] Stefan-Boltzmann law – David Halliday, etc. Physics Wiley, 2001

[6] Jarvis march for convex hull – Cormen, Thomas H., Leiserson, Charles E., Rivest,

Ronald L., Stein, Clifford. Introduc-tion to Algorithms. MIT Press and McGraw-Hill, 2001

[7] K-Means Clustering Algorithm – Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C.

D., Silverman, R., Wu, A. Y. . IEEE Trans. Pattern Analysis and Machine Intelligence,

2002, 24: 881–892

http://en.wikipedia.org/wiki/Hamming_code

