
RoboAKUT 2015 Rescue Simulation League Agent
Team Description

H. Levent Akın and Okan Aşık

Department of Computer Engineering
Boğaziçi University, 34342, Istanbul, Turkey

{akin}@boun.edu.tr
http://robot.cmpe.boun.edu.tr/rescue

Abstract. RoboAKUT is a multi-agent rescue team developed at the Artificial
Intelligence Lab of the Computer Engineering Department of Boğaziçi Univer-
sity. In this paper, we give a brief description of the software architecture and the
algorithms used by the RoboAKUT 2015 team. Our current rescue team is based
on the market paradigm with regional task management. For the RoboCup 2015
competition, based on our experiences in RoboCup 2014 we made some changes
to improve the effectiveness and robustness of the developed algorithms. Addi-
tionally, we are now in the process of implementing a Decentralized Partially
Observable Markov Decision Process based approach. We are working on a new
layered Dec-POMDP approach for solving Dec-POMDP problems having big ac-
tion space. Our results with the RoboCup 2014 maps show that the RoboAKUT
2015 team will be a serious contender in RoboCup 2015.

1 Introduction

RoboCup Rescue Simulation (RSL) agent competition consists of a disaster manage-
ment simulation with multi-tasking heterogeneous agents, i.e.Fire brigades, Fire Sta-
tion, Police Forces, Police Office, Ambulance Teams and Ambulance Center. In addi-
tion to being one of the best test beds for agent coordination, it contains many other
challenges such as the development of agent communication protocols for limited com-
munication and noisy message arrivals, multi-agent path planning, scheduling, opti-
mization, supervised learning for civilian death time and fire behavior estimation and
unsupervised learning for agents to develop policies.

RoboAKUT is a multi-agent rescue team developed at the Artificial Intelligence
Laboratory of the Department of Computer Engineering of Boğaziçi University. The
team performs rescue operations on the simulation environment provided by the RoboCup
Rescue Simulation League. RoboAKUT has been participating in the RoboCup Rescue
Simulation Competitions since 2002. Our team has won the First Place in the agent
competition in RoboCup 2010 Singapore.

The rest of the paper is organized as follows. In Section 2 the team members and
their duties are introduced. The contributions made for RoboCup 2015 are given in Sec-
tion 3. In Section 4 the Market algorithm and its implementation for the fire fighters,
ambulances and police forces are described. The layered Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP) based approach is described in 5.

The current scores of RoboAKUT 2015 are given in Section 6. The conclusions are
given in Section 7.

2 Team Members and Their Contributions

– Okan Aşık (Developer)
– H. Levent Akın (Advisor)

3 RoboAKUT 2015

RoboAKUT team code was completely rewritten for the RoboCup 2010 competition
[1], and has been revised each year since. RoboAKUT 2015 is the optimized and im-
proved version of the RoboCup 2014 [2] code based on the competition experiences.

RoboAKUT 2015 currently uses subsumption based architecture [3] and a market
driven approach [4] in the task assignments to the agents. In addition to the regional
task assignment system, we use an auction system for the task assignment to each agent.
This is an effective hybrid market paradigm and regional task assignment system. We
are now in the process of adapting a new layered approach based on Decentralized
Partially Observable Markov Decision Process (Dec-POMDP) developed in [5, 6] and
which was successfully applied to robot soccer [7].

3.1 Agent Architecture

Our agent architecture has the following basic components; distributed world model-
ing, priority based communication and subsumption behavior component. The agent
first creates a world model where it keeps information about the other agents, traveled
buildings, civilians. Then, the agent uses this world model to choose a behavior from
the subsumption behavior component. In the subsumption architecture, the behaviors
are designed as independent entities. Each behavior has a certain priority over each
other and certain activation conditions. The final behavior of the agent is chosen ac-
cording to priority and activation condition evaluated according to the world model of
the agent.

Distributed World Modeling The first step of the world modeling is dividing the
map into regions. Currently, we divide the map into equal sized grids. We determine
the number of grids according to the number of agents. Finally, we cluster regions
according to building area for fire brigades, road count for police force, and building
count for ambulance. The agent closer to the center of a region cluster is assigned to
this region cluster.

To be able to rescue civilians, the agents should explore the map. Therefore, they
keep a list of buildings to be explored. This list is first populated with the buildings of
the assigned regions, but is later updated according to the messages received from the
other agents. If the agents hear a civilian, they send messages to the other agents. The
agent closer to the civilian adds the civilian’s building to the exploring list.

Priority Based Communication In RSL, there are two types of communication; voice
and radio. Both communication modalities has certain failure probability and limited
bandwidth. Therefore, a communication strategy is needed to be able to efficiently
communicate. We first create the list of message types such as, Civilian Information,
Building Burning, and Clear Path Is Needed. We evaluate the available communication
channels and assign message types to the channels. We also define the priority levels of
the messages. For example, Civilian Is Saved Or Dead message has the highest prior-
ity. When an agent wants to send a message, the message is enqueued to the message
queue. The message controller checks the message queue and sends messages depend-
ing on the available communication channels and bandwidth. To be able to increase the
reliability of the message in the presence of noise, the message controller repeats the
bytes of the message. The number of repeats is calculated as follows:

repeatcount = d log(1− reliability)
log(noise)

e

The Subsumption Behavior Component Subsumption architecture is a behavior ar-
bitration mechanism. The most important property of subsumption architecture is that
behaviors can be tested without interfering with each other. Therefore, we developed a
repository of behaviors. Some of those behaviors are common to every agent type. For
example, every agent should save themselves as the very basic behavior. Every agent
should search the map when they do not have an active high priority behavior. Every
behavior has a certain activation condition. For example, Clear Blocked Road behavior
is activated when the agent type is police force, and is the agent close enough to clear
the blockage.

We define three basic tasks which requires tight task allocation for better perfor-
mance. These tasks are rescuing the civilians, extinguishing the fires, and clearing the
blockages. Therefore, we use a market-based algorithm to effectively allocate these
tasks to the agents. The auction behavior is a part of the subsumption architecture. If
any behavior is not active for rescuing the agent’s own well-being, the agent will exe-
cute its auction behavior for the task whose cost is minimal for the agent. Auction will
be carried out by sending a message to the other agents. The other agents will calcu-
late their own costs and either approve or give a bid smaller than the cost of the agent
which started the auction. When the bid could not be improved or certain time step is
completed, the auction ends, and the agents execute their assigned tasks. More details
of market-based algorithm can be found in Section 4.

4 The Market-Driven Method

Market-driven methods (MDM) are based on the maximization of the overall gain of
a group of robots by cooperation, collaboration and/or competition among them. This
requires taking the total profit of that group into consideration while planning. Com-
munication between robots for trading jobs, power and information is essential. Either
distributed or centralized decision mechanisms may be employed based on the struc-
tures of the teams [4].

4.1 Application of MDM

In our implementation we integrate MDM and behavior based (BB) methods as shown
in Fig. 1. An additional behavior that applies the market logic is integrated to the be-
havior based system. For every task this market implementation is specialized in order
to meet the specific needs. The details of using MDM is given in [8].

Fig. 1. The hybrid architecture

4.2 Generalized Market Algorithm and Auction Mechanism

The most important goal in a search and rescue mission is optimizing the process
through high level planning. In the RSL competitions, the optimization measure is the
score of a team at the end of the simulation. The whole system is a “heterogeneous
multi-agent system” as there are different agents specialized in different tasks and there
is more than one agent contributing to the same aim. Our goal is integrating market
driven methods in order to balance reactive characteristics of the system with delibera-
tive one [9].

Application of the Market Based Algorithm In the implemented market algorithm,
every agent without an assignment calculates the costs for its known fires, and sends the
best two of these costs to the center. The center, using its auction tools adds those bids to
the appropriate auctions and gathers results for the ongoing auctions. If according to the
results one agent is assigned to more than one building, an auction weighing the priority
of the building and the cost for agent in taking action against that building is held on
those results and the final decision is sent to the agent. If according to the results one
agent is not assigned to any building, it is added in the auctions held for three buildings
with the highest priority and no utilization. If there are results involving more than one
agent, they are interpreted using the method described above.

As can be seen in the test results in [9], the market algorithm is a very important
factor in enhancing the scores by establishing communication hence cooperation and
collaboration between agents. It is this collaboration that improves the scores, as it
avoids “excessive clustering” around disaster events and provides a close-to-optimal
distribution of work, and resources around jobs in an intelligent manner, taking into
consideration important factors like collective capacities of a groups versus jobs.

Due to the nature of the search and rescue task there are many parameters that
need to be considered, however, the scores in the competitions show that this approach
improves task achievement considerably.

5 Research Direction: The Layered Decentralized Partially
Observable Markov Decision Processes Approach

We use the general approach for solving Dec-POMDP problems using genetic algo-
rithms developed by Eker and Akın [5], [6]. We previously showed that we can learn
multi-agent control policies using this approach for robot soccer [7]. We use the same
approach to learn layered control policies.

In the initial implementation, we only consider the problem of dynamic task allo-
cation of fire brigades to buildings. We use the map as a graph where every node is a
building and if there is road between buildings these nodes are connected. There are
actions as many as the number of buildings for every agent. Starting from the top layer,
we divide the set of actions into two sets. The division is repeated at every layer until
there is only one action left. At every layer we solve a Dec-POMDP problem, which
chooses the action cluster for the agents. We use genetic algorithms to search in the
newly constructed policy space layer by layer. We learn the policies of one layer while
keeping the other layer’s policies the same. The details of the algorithm are given in
Figures 2 and 3.

Algorithm Layered Dec-POMDP Algorithm
Q← 〈q1,q2, ..,qL〉
Initialize Q with random policies
repeat

for all l ∈ [L,1] do
〈ql ,V 〉 ← SolveByGA(Q, l)

end for
until No improvement

Fig. 2. Layered Dec-POMDP algorithm

Algorithm SolveByGA
Input Q layered policies, l layer index
Output qbest

l improved policy, V reward of the policy
Generate Quasi-random initial population p for ql
repeat

Compute reward of p by simulation
Evolve p
qbest

l ← get best solution
V ← compute reward of qbest

l
until No improvement

Fig. 3. Dec-POMDP genetic algorithm

5.1 Layered Dec-POMDP Policy Representation

We represent the flat Dec-POMDP policy in layers where we solve different Dec-
POMDP problems. This representation compresses the flat Dec-POMDP policy with
clustering action and observation sets. We represent every layer as a finite state con-
troller policy with the clustered Dec-POMDP model. As opposed to the standard ap-
proach where a different policy is used for every agent, we use one policy for every
agent of the layer since there are many agents. At every layer, we compute a Dec-
POMDP policy whose observation set is calculated by a function, obsCluster, and ac-
tion set calculated by the function, actionCluster. The obsCluster function will generate
a new observation set based on a subset of observations which are calculated according
to the previous layer. In the same manner, actionCluster function will generate a new
action set based on a subset of actions which are calculated according to the previous
layer.

The approach can work with arbitrary obsCluster and actionCluster only if it sat-
isfies the following conditions; actionCluster will divide the given action set into two
disjoint sets and obsCluster will provide information to summarize the observation due
to two disjoint action sets. We can see that we also hierarchically divide the state of
the Dec-POMDP model according to clustering functions. Although our policy repre-
sentation does not use the state set, it implicitly acts on the state set of the problem.
Therefore, this hierarchical policy representation can represent optimal policies when
the clustering functions are also generated as disjoint state sets at every layer.

A1

A2

Layer 1

A1 A2

Layer 2

A1

A2

Layer 3

A1 A2

Layer 4

A1
A2

Layer 5

A1 A2

Layer 6

Fig. 4. Clustering actions for firefighting dynamic task allocation problem. Every grid represents
a house.

We explain the concept of layered Dec-POMDP policy with an illustrative example
as follows. We first determine our clustering functions. As we previously pointed out,
these should be defined so that the disjoint action and observation sets are defined over
the disjoint state set. We consider the firefighting problem, whose state space is defined
on a grid. Every grid or house has a fire level and the agents have positions on the
grid. Therefore, the state set is S = {hi, j× ak : 0 ≤ i, j < 8 and 0 ≤ k < |N|} for a 8x8
problem. hi, j denotes the fire level of the houses, N denotes the agent set and ak position
of kth agent. The observation set is the fire level of houses and the position of the agent.
the action set is the houses. We define actionCluster so as to divide the house grids
geometrically into two equal sets as seen in Figure 4. Since we divide into two sets
at every layer, we have 2× log|numGrid| layers. At the last layer, the policy chooses
the primitive action. At every layer, we solve a Dec-POMDP problem which is actually
distributed to the different locations of the grid.

6 Current Scores of RoboAKUT 2015

We have tested the RoboAKUT 2015 code on the scenarios used in the finals of the
RoboCup 2014 RSL competition. Table 1 demonstrates that the current state of Robo-
AKUT team is a bit far from the runners up of RoboCup 2014. The first four rows
display the scores of the finalists in the official RoboCup 2014 results. The last row
shows the scores of the RoboAKUT 2015 team. Figure 5 displays the map at the end of
the simulation as a result of a run in Berlin3 scenario. When we investigate the results,
we see that we mostly suffer from clearing blockages since we have very low scores
from Joao3 and Istanbul3 scenarios. However, we have comparable scores for Kobe4,
Eindhoven3, Paris3, and Mexico2 scenarios.

Table 1. RoboCup 2015 Final Scenario Results

Maps

Kobe4 Eindhoven3 Paris3 Berlin3 NY3 Joao3 Istanbul3 Mexico2
S.O.S. 204.20 41.09 127.14 83.44 102.43 87.47 58.50 273.73
MRL 197.90 33.71 122.96 88.39 143.97 63.17 39.03 278.59

CSU-YUNLU 203.11 34.83 122.02 80.36 122.89 58.42 19.59 276.94
Kherad 181.74 29.56 122.21 95.03 137.08 52.24 44.27 270.72

RoboAKUT 2015 107.60 24.01 118.80 83.42 59.85 1.68 4.15 220.23

7 Conclusions

In this paper we presented an overview of the agent system model and the algorithms
of the RoboAKUT 2015 team. The agents are market based and can utilize resources
effectively even under dynamic conditions for fire fighting, saving civilians and clearing
roads. The work on applying a layered Dec-POMDP based algorithm is in progress.

Fig. 5. Berlin 3 map result.

The test runs on the simulator show that code is more robust and the fires are suc-
cessfully extinguished and the majority of the civilians are saved with an overall signif-
icant performance increase over RoboAKUT 2014.

References

1. H. Levent Akın, Orçun Yılmaz, and Mehmet Murat Sevim. Roboakut 2010 rescue simulation
league agent team description. Technical report, Bogazici University, 2010.

2. H. Levent Akın and Okan Aşık. Roboakut 2014 rescue simulation league agent team descrip-
tion. Technical report, Bogazici University, 2014.

3. Rodney A Brooks. A robust layered control system for a mobile robot. Robotics and Automa-
tion, IEEE Journal of, 2(1):14–23, 1986.

4. Hatice Kose, Kemal Kaplan, Cetin Mericli, Utku Tatlidede, and Levent Akın. Market-driven
multi-agent collaboration in robot soccer domain. In Cutting Edge Robotics, pages 407–416.
pIV pro literatur Verlag, 2005.

5. Barış Eker and H. Levent Akın. Using evolution strategies to solve DEC-POMDP prob-
lems. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 14(1):35–
47, 2010.

6. Barış Eker and H. Levent Akın. Solving decentralized pomdp problems using genetic algo-
rithms. Journal of Autonomous Agents and Multi-Agent Systems, 2012.

7. O. Aşık and H.L. Akın. Solving multi-agent decision problems modeled as dec-pomdp: A
robot soccer case study. In RoboCup 2012 Symposium, June 24, 2012, Mexico City, 2012,
2012.

8. H. Levent Akın and Mehmet Murat Sevim. Roboakut 2012 rescue simulation league agent
team description. Technical report, Bogazici University, 2012.

9. Burak Zeydan and H. Levent Akın. Market-driven multi-agent collaboration for extinguishing
fires in the robocup rescue simulation domain. In 2nd CSE Student Workshop (CSW’11), 2011.

