
NAITO-Rescue RoboCup 2017 - Japan

Agent NAITO-Rescue

Yuki Miyamoto1, Shunki Takami1, Akira Hasegawa1, Nobuhiro Ito1, Kazunori Iwata2

1Department of Information Science, Aichi Institute of Technology, Japan
2Department of Business Administration, Aichi University, Japan

rescue-2017@maslab.aitech.ac.jp

Abstract

We consider efficient task allocation under the RoboCupRescue Simulation en-
vironment [1] in which agents cannot always communicate effectively. In this paper,
we describe the modules developed in this task. These modules form groups of
agents who execute the same task using near field communication, and enable the
groups to adjust the number of agents executing the same task. We reduce the
redundancy in the task execution process and improve the score over that achieved
last year.

1 Introduction

In the disaster environment handled by the RoboCupRescue Simulation, we cannot
perform efficient task allocation when intensive control is hampered by insufficient com-
munication. To allocate tasks in such cases, we must introduce leaders that can collect
as much information as possible and perform task allocation. Thus, we attempt to solve
this problem by forming groups of agents (agent group) using unimpeded near-field com-
munication and electing a leader in each agent group. We implement the formation of
agent groups and task allocation using a Target Detector module.

In addition, we implement an A* algorithm that can evaluate whether a road is pass-
able based on information obtained through communication with other agents. This al-
gorithm is contained in a Path Planning module. About other modules, we implemented
them with referring to RCRS-ADF’s sample modules [5].

In Section 2, we describe the Target Detector module and the Path Planning module.
In Section 3, we describe the evaluation of the agents using these modules.

As a result of the evaluation experiment described in Section 3, the score achieved by
the FireBrigades using the modules from last year can be improved. However, efficient
task allocation is not possible when the fires are spreading widely.

2 Modules

2.1 Target Detector

This module forms agent groups and allocates tasks by leaders [4]. Using near-field
communication, agents that are in proximity form groups. From this, we can allocate
tasks regardless of the communication environment changing with a simulation situ-
ation. However, to convey information as broadly as possible, agents sometimes use

1



NAITO-Rescue RoboCup 2017 - Japan

long-distance communication, even if the communication environment is unstable. In
the current RCRS-ADF specification, an agent cannot pass a user-defined values such as
evaluation values to other agents. Therefore, this module only uses general information
about the agent, task and command.

In addition, we must independently implement the formation of agent groups and
elect the leader of each group using a Clustering module. However, task allocation in
this module involves forming agent groups, which cannot be implemented in the current
RCRS-ADF specifications. Therefore, we form agent groups using the Target Detector
module.

We illustrate the transition of an agent’s active state in this module in Figure 1.
Here, we define agents that are not the leader of an agent group as followers. The
transition of each agent’s active state can be roughly divided into two processes: (i)
forming agent groups and electing the leader, and (ii) task allocation and adjusting
the agent group. We describe each process in turn. It is necessary for this module
to calculate the importance of each tasks and the required number of agents. As an
example, we describe the application of our approach to the FireBrigades task.

2.1.1 Forming agent groups and electing leaders

This module forms agent groups according to the task and ensures that multiple agents
efficiently execute the same task. In each agent group, the agent with the lowest ID value
becomes the leader, who then selects which task the agent group will perform. When the
same task is selected by more than one agent group, the leaders communicate each other
to ensure more efficient task execution. The integration of agent groups is performed
in the following procedure. The number given at the end of each step indicates the
corresponding point in Figure 1.

0. Let all agents be the leader of an agent group with 0 followers.

1. Each leader conveys information about itself and its task to all other leaders within
a short distance using near-field communication. → II⃝

2. Leader B adds leader A to its agent group when leader B receives task information
concerning the same task. Leader A also receives information from leader B and
performs similar processing. → I⃝

3. Leaders A and B elect the next leader of an agent group formed in step 2. If leader
A’s ID value is lower than that of leader B, leader A is selected as the next leader.
Leader B becomes one of followers in the group. → I⃝

4. Agent B, who is no longer a leader, commands the followers of its agent group
before step 2 to leave the group while keeping the task. → III⃝

5. The follower who is commanded to leave the agent group while keeping the task
in step 4 forms a new agent group only consisting of itself and continues the task.
The followers become leaders of an agent group with 0 followers. → IV⃝

6. The new leaders in step 5 have same task, and thus they continue to integrate
their groups again, until the number of agents in the integrated group reaches the
number to complete the task. → II⃝ I⃝

2



NAITO-Rescue RoboCup 2017 - Japan

Leader's flow

Updating task

information

Sending the information

about myself

Am I leader?

Selecting a task

Calculating the number

of agents required

Commanding my followers

to leave group

To Follower's flow

Follower's flow

Updating task 

information

Updating commands

Which command?

Leaving my group

To Leader's flow

Executing the task

Commanding my extra

followers to leave group

Yes

Leave group

Execute task

Forming agent groups and electing leadersUpdating group/leader

Task allocation and

adjusting the agent group by the leader

Ⅰ

Ⅱ Ⅲ

V

Ⅵ

Ⅹ

Ⅳ

Commanding my followers

to execute the task

Are my followers

too many?

Are my followers 

too few?

Requesting to join

my group

Executing the task

No

Yes

Ⅶ

Ⅷ

Ⅸ

No

Yes

No

Figure 1: Transition of an agent’s active state

In step 4, leader B breaks up its agent group temporarily. This is because its fol-
lowers may not know the new leader (agent A) due to the restricted range of near-field
communication. In addition, a follower leaves its agent group when it moves out of the
range of near-field communication with its leader, because it would no longer be possible
to receive commands from the group leader.

3



NAITO-Rescue RoboCup 2017 - Japan

2.1.2 Task allocation and adjusting the agent group by the leader

In this module, each leader selects the task to be performed by its agent group and allo-
cates work to its followers based on updated information concerning the task selection.
At this time, each leader adjusts the number of agents in its group according to the
target task. The adjustments are carried out by withdrawing agents from the group and
integrating them into other agent groups. The task allocation and adjustment of the
agent group by the leader is performed in the following procedure. The number after
each step indicates the corresponding item in Figure 1.

1. When the leader obtains task information with higher importance than the cur-
rently selected task, the leader selects that task to be performed by its agent group.
→ V⃝

2. The leader calculates the required number of agents to complete the task selected
in step 1. →VI⃝

3. The leader commands its followers to execute the new task using near-field com-
munication, with the number of agents obtained in step 2 as the maximum. →
VII⃝

4. The leader commands followers that are not the target of the command in step 2
to leave its agent group using near-field communication. →VIII⃝

5. The leader requests other agent groups to join its agent group when the number
of agents in its group is less than the number calculated in step 2. → IX⃝

Step 5 and the participation of other agent groups are controlled by the following
procedure. Here, let agent A be the leader requesting the participation and agent B be
the leader receiving the request for participation.

1. Leader A conveys information about the task in a request for participation to as
many other leaders as possible using near-field communication and long-distance
communication. (step 5 above)

2. Leader B of another agent group receives the information sent in step 1 and updates
its current information with the received information.

3. Leader B reselects a task based on importance.

4. Leader B moves to the task’s target area with its followers when the task selected
in step 3 is the subject of the request for participation.

5. The agent groups of leaders A and B are gathered within proximity and execute
the same task.

6. The agent groups are integrated and the agents led by leader B join the group led
by leader A.

2.1.3 Calculating (updating) the importance and the number of agents re-
quired for a task

Using this module for the FireBrigades task, a set of buildings that can prevent the
fire from spreading further if their fire extinguished is regarded as a task candidate.

4



NAITO-Rescue RoboCup 2017 - Japan

and its surrounding buildingsI

Normal building

Fire building

Fire building on the outermost side

Fire group

Ⅱ

Ⅱ

Ⅱ

Ⅱ Ⅱ

Ⅰ

Ⅲ Ⅳ

Ⅳ

Ⅳ

III and its surrounding buildings

Figure 2: Forming a fire group

Only the buildings that are task candidates have importance levels. The importance
levels are calculated according to the building information obtained by agents. The task
candidates are selected in the following procedure. Figure 2 illustrates each step. In
Figure 2, each building is represented as a square for simplicity.

1. Fire groups are formed (marked as the Fire group in Figure 2) by associating
adjacent buildings on fire.

2. All buildings located on the outermost side of each fire group formed in step 1 are
selected (marked as Fire building on the outermost side in Figure 2).

3. We consider each building selected in step 2 and its surrounding buildings. As
examples, when we focus on the highlighted building I⃝, its surrounding buildings
are as indicated by II⃝ in Figure 2. Correspondingly, the buildings IV⃝ are the
surrounding buildings of the highlighted building III⃝.

4. If the agents in the current group can terminate the fire in the building before it
spreads to surrounding buildings using the agents in the current agent group, a
task candidate is each element of the set of the buildings in step 2.

5. Otherwise, each task candidate is the set of the surrounding buildings in step 3
(e.g. the buildings II⃝ or the buildings IV⃝).

Next, we describe how to determine the importance of the task candidates. We con-
sider the two following points: the more applicable they are, the higher the importance.

• There are a lot of surrounding buildings to which the fire could possibly spread.

• The time required to move and extinguish the fire is short.

The agents cannot judge whether a building is on fire without detailed information.
Therefore, a buildings for which information has not been updated will have lower im-
portance than those with updated information. Based on the above points, we introduce
the influence on the surrounding buildings per step as the importance I:

5



NAITO-Rescue RoboCup 2017 - Japan

I =
B + α×B′

M + E
(1)

where B = The number of surrounding buildings that are not yet on fire and have
updated information,

B′ = The number of surrounding buildings that are not yet on fire and do not
have updated information,

M = The time taken by the agents in moving to the building,
E = The time taken by the agents to extinguish the fire in the building,
α = A constant that reduces the influence of B′ on the importance I (0 ≤ α ≤ 1).

Further, if there is a request from another agent to join the task, it should be con-
sidered that the task is highly urgent. Therefore, we introduce the importance I ′ that
depends on the number of requests. We use I ′ as the importance in the FireBrigades
task selection.

I ′ = I × βT (2)

where T = The number of the requests for participation,
β = A constant that increases the importance per request for participation (β ≥

1).

Next, we describe how to determine the required number of agents of a task. We
consider the required number of agents for a task to be the the number that can extin-
guish a building before the fire spreads. Therefore, we let the required number of agents
for a task be the number of agents that can completely or preliminarily extinguish the
target building before its surrounding buildings catch fire.

2.2 Path Planning

This module performs path planning using the A* algorithm [3], which is one of many
path planning algorithms [2]. Here, we describe the evaluation value used in the A*
algorithm. We consider the two following points for the evaluation value: the more
applicable they are, the more appropriate the path.

• The distance to the destination is short.

• The path is not impassable (according to Blockades).

In most cases, an agent moves to target points beyond its perceivable range. For
this reason, the agent cannot judge whether the path determined by the path planning
algorithm is passable or not. Therefore, the agent judges whether the path is feasible
based on road information received by communication with other agents. However, the
credibility of the road information received by communication decreases with the passage
of time. Based on the above points, we introduce the evaluation formula COST (n,m)

6



NAITO-Rescue RoboCup 2017 - Japan

to the general evaluation formula f(m) of the A* algorithm. We use COST (n,m) as
the cost for passing through from n to m in consideration of the information that it is
impassable instead of usual cost L.

f(m) = g(n) + COST (n,m) + h(m) (3)

COST (n,m) = (1 + γ × S − P

S
)× L (4)

where g(n) = The total COST (i, j) of the path from the start node to n,
h(m) = The Euclidean distance from m to the destination,
L = The Euclidean distance from n to m,
S = The effective time of the road information that the path from n to m is

impassable,
P = The elapsed time since the agent received the information (0 ≤ P ≤ S),
γ = A constant that makes L longer when the path from m to n is impassable

(γ ≥ 0).

3 Preliminary Results

3.1 Evaluation experiment

We measured the score using three maps used in the RoboCup 2016 Rescue Simulation
Agent Simulation League to evaluate the agents performance using the proposed mod-
ules. However, we removed the PoliceForces, AmbulanceTeams and Blockades from the
maps, because only the FireBrigades are currently fully developed. We used the score
achieved by our team’s agents last year [6] for comparison. The average scores over three
repeated tasks are presented in Table 1.

Table 1: Scores

Team
Map

Eindhoven1 VC1 Mexico1

2017 87.269 13.737 51.698
2016 76.531 6.126 38.486

3.2 Considerations

Table 1 shows that the proposed modules achieved higher score than the agents used
in last year’s competition. There are two possible reasons for this increase in the score.
The first point is that tasks no longer involve more agents than necessary, because the
number of agents working on the same task is adjusted by forming agent groups. The
second point is that it is possible to suppress the spread of fire when the agents identify

7



NAITO-Rescue RoboCup 2017 - Japan

a fire in its early stages. This is because it is possible to predict the spread of fire and
execute a preliminary extinguishing in the appropriate building.

However, the agents fail to suppress the spread of fire if they cannot identify it in
the early stages. The agents cannot completely suppress the spread of fire in fire groups
that grow significantly, so the agents need to partially suppress the fire. However, as
the fire group becomes larger, the number of task candidates increases. Therefore, it
is impossible to suppress the spread of fire even partially, because the task targets are
greatly dispersed. To solve this problem, it is necessary for local agents to form an agent
group irrespective of the task, and the leader should allocate appropriate tasks to each
follower in consideration of the efficient combination of the target tasks.

4 Conclusion

In this paper, we describe the Target Detector module and Path Planning modules. We
conducted an evaluation of the agents using these modules. As a result, we found that
a higher score can be achieved than with the agents used last year. However, we also
identified several problems in the Target Detector module. Therefore, we will use this
module after solving the problems in the Agent Simulation Competition.

References

[1] Robocup Rescue Simulation. http://roborescue.sourceforge.net/web/.

[2] E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE
MATHEMATIK, 1(1):269–271, 1959.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic de-
termination of minimum cost paths. IEEE Transactions on Systems, Science, and
Cybernetics, SSC-4(2):100–107, 1968.

[4] Nobuhiro Ito, Yoshiki Asai, Tetsuya Esaki, and Koichi Wada. A cooperative model
of rescue agents by a group forming algorithm. T.SICE, 41(12):964–973, 2005.

[5] Kazuo Takanayagi, Takuma Kawakami, Shunki Takami, Yusuke Kitagawa, Shiv-
ashish Jaishy, Nobuhiro Ito, and Kazunori Iwata. Proposal and Implementation
of new framework to RoboCup Rescue Simulation NAITO-Rescue 2015 (Japan).
RoboCup 2015: Robot World Cup XIX, 2015.

[6] Kazuo Takanayagi, Shunki Takami, Yuki Miyamoto, Masahiro Yamamoto, Yoshiyuki
Kozuka, Nobuhiro Ito, and Kazunori Iwata. Contraction hierarchy algorithm that
considers fault incidences under disaster environment NAITO-Rescue 2016 (Japan).
RoboCup 2016: Robot World Cup XX, 2016.

8


