
RoboAKUT RoboCup 2017 - Japan

RoboCup 2017
Rescue Simulation League Team Description

RoboAKUT (Turkey)

H. Levent Akın, Okan Aşık

Boğaziçi University, Turkey
[akin@boun.edu.tr, okan.asik@boun.edu.tr]

Abstract

RoboAKUT is a multi-agent rescue simulation team that competes in RoboCup
Rescue Agent Simulation League(RSL). It has been competing in RoboCup competi-
tions since 2002 and won the First Place in the agent competition in RoboCup 2010
and in RoboCup IranOpen 2017. RoboAKUT code base is rewritten to use Agent
Development Framework(ADF) ADF requires the development of target selectors
and action modules which calculates the RSL simulator actions for the selected tar-
gets. Also, these modules uses basic algorithms such as path planning, clustering,
and exploration. We develop reward-based task allocation mechanism where we
calculate utility for targets. The utility values are calculated as the expected to-
tal reward using value iteration algorithm. RoboAKUT team got the first title in
RoboCup IranOpen 2017.

1 Team Members

• H. Levent Akın (Advisor)

• Okan Aşık (Developer)

2 The Agent Development Framework

Starting from RoboCup 2017, all the competing teams are required to use Agent De-
velopment Framework (ADF). The new RSL teams generally struggle to develop a fully
working agent framework because of the complexity of the RSL simulator. The ADF
aims to provide a simple interface for the agent development by encapsulating the de-
tails of the RSL simulator. The behavior of an agent is determined by its Tactic. The
target selection and the calculation of an action for the selected target are coordinated
by Tactic module. The module also manages messages that inform all modules about
the new state of the world that is perceived by the agent. The competition prohibits to
change the Tactic so that all teams compete with the same Sample Tactics provided by
ADF. There is a Tactic module for each agent type as follows:

• Mobile Agents: There are three types of mobile agents in RSL; Ambulance
Team, Fire Brigade, and Police Force. Every agent carries out a specific task.
The RSL simulator runs a single time step, sends perception messages for agents

1

RoboAKUT RoboCup 2017 - Japan

and waits for an action from agents. The Tactic updates world view of all the
modules with the new perception, calculates an action, and finally sends the action
message to the simulator. All mobile agents use a target detector and a search
module. The target detector determines a target according to agent type and if
the target detector cannot detect a target, the search module selects a target for
the purpose of exploration. Once a target is selected either by target detector
or search module, the action modules calculate an RSL action according to the
selected target. However, move action module is common for all mobile agents
because when the agent chooses an exploration target, its action is calculated by
move action.

– AmbulanceTeamTactic uses human detector and search modules for the
human (either a civilian or a mobile agent) target selection. The transport
action and move action calculate a simulator action for the selected target.
The transport action action chooses either to transport, rescue, or move to the
target. When the Ambulance Center assigns a target for the agent ambulance
command executor modules are used.

– FireBrigadeTactic uses building detector and search modules for the build-
ing target selection. The firefighting action and move action calculate a simu-
lator action for the selected target. For example, if the building to extinguish
is not close enough to extinguish, the agent chooses to move towards the
building. When the Fire Station assigns a target for the agent fire command
executor modules are used.

– PoliceForceTactic uses road detector and search modules for the road target
selection. The clear action and move action calculate a simulator action for
the selected target. For example, if there are blockades on the path to the
selected road target, they are also cleared by the agent. When the Police
Station assigns a target for the agent police command executor modules are
used.

• Center Agents: There are three center agents in RSL; Ambulance Center, Fire
Station, and Police Office. The center agents act as a communication center when
scenario permits a radio communication. ADF provides a simple communication
framework on RSL. The teams can use this communication framework to develop
their strategies to allocate tasks to the agents. However, center agents do not know
the tasks since they cannot perceive the world as mobile agents do. Therefore, they
create a task list by using task messages sent by the mobile agents. This task list
aggregation mechanism is already provided by ADF.

– AmbulanceCenterTactic uses human target allocator and human command
picker modules to assign human targets to the agents. The human target allo-
cator assigns the targets to the closest mobile agents and the human command
picker creates a command message for the agent.

2

RoboAKUT RoboCup 2017 - Japan

– FireStationTactic uses fire target allocator and fire command picker mod-
ules to assign buildings that are on fire to the agents. The fire target allocator
assigns all targets to the closest mobile agent and the fire command picker
creates a command message.

– PoliceOfficeTactic uses road target allocator and road command picker mod-
ules to assign blocked roads to the closest mobile agents. The road target
allocator assigns all blocked road to the closest mobile agent and the road
command picker creates a command message.

3 RoboAKUT Strategies

RoboAKUT extends target detectors, actions, path planning, clustering and search mod-
ules of ADF.

3.1 Target Detectors

The main goal of the target detectors is the task allocation. The module chooses a task
from available tasks based on the limited world view of the agent. For example, a Fire
Brigade agent needs to choose a building to extinguish from the list of buildings that
are on fire. Every agent type has its own target detectors. Police Force agent uses road
detector, Fire Brigade agent uses building detector, and Ambulance Team uses human
detector.

3.1.1 Road Detector

The road detector chooses a clearing target with a decision tree that is tuned by ex-
periments. The decision tree implements a priority based targets. At every decision
level, the agent checks the condition for the behavior of that level. For example, if the
agent perceives a human that is stuck in a blockade, clearing this blockade has the high-
est priority. The behaviors of the road detector is as follows starting from the highest
priority:

1. Clearing for a Human: The agent looks for humans (civilians or mobile agents)
in its world model. For every human, the agent checks whether the human is stuck
and alive. A human can stuck in two ways; it is either just inside a blockade (a
polygon inside a road polygon), or a blockade is just in front of the building where
the human stays in. The agent chooses the closest of the stuck humans if there are
more than one stuck human.

2. Clearing the Cluster: If there is no agent to rescue in the world model of
the agent, the agent will clear the roads of its own cluster. Every agent has an
assigned cluster. The clustering algorithm assigns a cluster to every agent based
on the distance of the agent to the center of the clusters. The algorithm also
ensures that every cluster constructs a connected graph. The agent keeps track of

3

RoboAKUT RoboCup 2017 - Japan

A2

3

1

1
Figure 1: An example illustration of cluster clearing behavior. The blue and green
squares represents the roads in the cluster. The visited ones colored as green. A repre-
sents the agent position and values at the leaf nodes show the utility values calculated
as the sum of unvisited roads on the path.

the visited roads. The ultimate aim of this behavior is to maximize the number
of cleared roads. Therefore, we formalize the problem as a task allocation where
the tasks are the leaf nodes of the cluster graph. We define the leaf as the node
having only one edge. The utility of a leaf node is calculated as the number of
the unvisited roads that agent needs to take to reach the leaf node. The path to
a leaf node is calculated using a shortest path algorithm. The behavior chooses a
leaf node having the highest utility value (see Figure 1)

3.1.2 Building Detector

The building detector algorithm chooses building targets in two ways: reactive planning
and general allocation. In reactive planning, the module gets all the building in extinguish
range that are on fire and chooses randomly one of them. Firstly, in our experiments,
we see that the reactive behaviors are quite effective despite their simplicity. Secondly,
since we do not coordinate the firefighting agents, we reduce the resource inefficiency
due to error in allocations. Random selection ensures the equal distribution of agents for
a given set of targets. The algorithm is concurrently running for every agent and agents
may not know the current position of other agents. If an agent does not get any message
or does not perceive other agent, it uses the last position of other agents. If the agent
does not have information about the other agents after the start of the simulation, it uses
the initial position of the agent. Although this looks like an ineffective method, since
agents generally moves around their starting position, it becomes a good approximation
for the position of the agent.

If there is no building in extinguish range, the module uses general allocation and
assigns buildings on fire to all the agents based on the distance between the building and
the agent. The algorithm iterates over the buildings on fire and gets two closest agents
to the building at every iteration. If this is the agent that is running the algorithm, it
is assigned to the current building and iteration ends. If the agent is not one of two
agents, these agents are removed from agent list, and the algorithm continues with the
next building.

4

RoboAKUT RoboCup 2017 - Japan

3.1.3 Human Detector

The human needs to be rescued when it is buried or wounded. If a human is buried, the
agent needs to rescue the agent from the debris. If a human is wounded, the agent needs
to transport the human to the refugee. The human detector module assigns humans
that needs to be rescued or transported to the agents. This module makes a central
assignment similar to the building detector based on the distance of the agents to the
humans which needs to be rescued.

3.2 Actions

The action modules calculate a simulator action for mobile agents according to the
selected target. There are four action modules; move action is used by all mobile agents,
clear action is used by Police Force, transport action is used by Ambulance Team, and
extinguish action is used by Fire Brigade agents.

3.2.1 Move Action

The module calculates a shortest path between the position of the agent and the given
destination. The path is the list of areas (roads and buildings) on the map. The simulator
accepts the path as a movement command.

3.2.2 Clear Action

The module gets a target position to clear. However, that requires the clearing of the
blockades that are on the path to the target. Therefore, as the first step of the algorithm,
the shortest path between the agent and the target position is calculated. The simulator
clear action is a vector starting from the position of the agent. The module creates clear
vector towards the next position on the shortest path. If this clear vector intersects
with a blockade, the module needs to clear this blockade. If the clear vector does not
intersects, a new clear vector created from the end point of the previous one. This
processes continues until the clear vector reaches the end of the path. If the clear vector
intersects with a blockade, the module checks whether the agent can clear the intersected
blockade. If the agent is able to clear the blockade, a clear simulator action created and
sent by the module. If the agent is not able to clear the blockade, a simulator move
action is created and sent by the module.

If the target selector module chooses a position to rescue a human from blockade,
the clear action needs to calculate a clear vector towards the position of the human. By
design, the target selector can choose only the areas to clear, therefore the clear action
needs to calculate the position of the human from selected position.

3.2.3 Transport Action

The transport action calculates a simulator action for the selected human. If the target
human and the agent is not on the same position (road or building), the module calculates

5

RoboAKUT RoboCup 2017 - Japan

a shortest path to move to the position of the target. Once the agent and the target
is on the same position, the module creates and sends a rescue action if the human is
buried and the module creates and sends a load action if the human is not buried and
is wounded. After the human is loaded to the agent, it is transported to the shortest
refugee and unloaded there.

3.2.4 Extinguish Action

The extinguish action calculates a simulator action for the selected building that is on
fire. If the agent needs to refill its tank, the module calculates a shortest path to the
closest refugee. If the agent has water, it creates and sends an extinguish simulator
action for the target building. If the building is not on the extinguish range, the agent
creates and sends a move simulator action by calculating the shortest path to the target
building.

3.3 Path Planning

The path planning algorithm calculates the shortest path between two positions on the
map. The map of RSL simulator consists of roads and buildings. They construct a
connected graph where the edge between vertices are defined as the neighbors. The
distance between neighbor roads and buildings are calculated as the distance between
the centers of these areas. We use Dijasktra’s shortest path algorithm [?] to calculate
the shortest path between two areas. Dijasktra’s algorithm starts from the start vertex
and builds a path using the shortest path from possible neighbors. The complexity of
the algorithm is O(|E|+ |V |2), where E stands for the number of edges (neighbors) and
V stands for the number of vertices (areas). At every iteration the algorithm chooses a
vertex having the shortest path starting from the start vertex. By implementing the list
which keeps the paths sorted according to their distance as the priority heap, we can
reduce the complexity to O(|E|+ |V |log(|V |)).

We also keep track of blocked roads and temporarily do not calculate them as a
neighbor for T time steps only for Ambulance Team and Fire Brigade agents. As the
agent moves on the map, the perceived roads are updated. This ensures the calculation
of a path that are clear of blockades. After T time steps, the blocked roads are reset and
assumed to be clear of blockades until the agent discovers that the road is still blocked.

3.4 Clustering

The clustering algorithm is used to create a hierarchical task allocation for the agents.
By assigning every agent to a particular area (roads and buildings), we aim to achieve a
balanced distribution of the agents on the map. We have building clustering algorithm
for Fire Brigade and Ambulance Team agents and road clustering algorithm for Police
Force agents.

6

RoboAKUT RoboCup 2017 - Japan

Figure 2: An example visualization of building clustering. The different colors represent
different clusters, but if two clusters with the same cluster becomes side to side they
seem like a single cluster (such as pink colored cluster).

3.4.1 Building Clustering

The buildings are clustered by k-means clustering algorithm [1]. We set the number of
clusters same as the number of agents that are same type, such as Fire Brigade agents.
Firstly, the algorithm sets random cluster centers. Then, it iterates over the buildings
and adds them to the closest cluster based on the air distance to the cluster centers.
Based on the member of the cluster a new cluster center is calculated. Finally, this
process continues for a given number of iterations. An example visualization of building
clustering can be seen in Figure 2.

3.4.2 Road Clustering

We would like to cluster the roads as a connected graph. Since the Police Force agents
needs to clear roads, they need to move on the connected roads. Therefore, if the road
cluster is not a connected graph, the agent needs to move on the other agents clusters.
Also, we use task allocation scheme using leaf of the graph as explained in Section 3.5.

We could use k-means algorithm, but this would result in disconnected graph since
the distances are measured as air distance. Also, some member of the clusters could be
close by air distance by might be very far away by movement distance (distance that
is needed to be covered by the agent). Therefore, we need to measure the distance
between the cluster center and the road by movement distance. However, this requires

7

RoboAKUT RoboCup 2017 - Japan

Figure 3: An example visualization of road clustering. The different colors represent
different clusters. These clusters create a connected graph so that some roads may be
member of more than one clusters.

the shortest path calculation at the assignment of every road. This algorithm performs
very slow compared to air distance calculation. Therefore, we propose to use air distance,
but after k-means clustering, we use an algorithm to connect the disconnected graphs
of the cluster by the shortest path. Finally, the roads on the connecting shortest paths
are also added to the clusters. An example visualization of road clustering can be seen
in Figure 3.

3.5 Search

The search module achieves the exploration for Fire Brigade and Ambulance Team agents
since the road detector module already implements an exploration algorithm. (see Sec-
tion) The module keeps a list of buildings to search, and removes the perceived buildings
from the list. There are two lists; all buildings list and the list of buildings only from
the cluster of the agent. The algorithm chooses the closest building from one of the
list with equal probability. Since the agents choose targets based on the distance, this
ensures that agents check the buildings for a victim or a fire one by one. This achieves
the full map exploration because we want to extinguish a fire as quick as possible. If
there is a fire just started at some corner of the map, all the Fire Brigade agents needs
to act on it. Otherwise, this fire may spread all over the map and becomes impossible
to extinguish. The lists are also reset after T time steps because the building that is not
fire may catch a fire in the future.

8

RoboAKUT RoboCup 2017 - Japan

Table 1: The RoboCup IranOpen 2017 competition scores. S stands for the simulator
score and P stands for relative scoring that is defined in competition rulebook. R shows
the rank of the teams according to total points.

Preliminary Round
R Teams Kobe1 Paris1 Istanbul1 Eindhoven1 VC1 Kobe2 Total

S P S P S P S P S P S P S P
1 MRL 84.48 18.0 157.79 12.0 125.65 24.0 105.75 24.0 84.5 24.0 60.71 15.0 618.88 117.0
2 RoboAKUT 87.52 24.0 164.26 14.0 116.69 15.0 84.88 11.0 72.31 19.0 99.81 24.0 625.47 107.0
3 Allameh Tab. 84.52 21.0 152.15 9.0 112.8 12.0 100.25 20.0 79.93 22.0 41.03 10.0 570.68 94.0
4 ApolloRescue 52.76 3.0 206.36 24.0 121.69 20.0 99.38 19.0 43.34 6.0 70.58 17.0 594.11 89.0
5 A.T.F 84.48 19.0 147.75 6.0 108.42 7.0 96.23 18.0 70.14 18.0 37.95 8.0 544.97 76.0
6 IR-Force 84.52 20.0 144.13 5.0 111.7 11.0 80.09 9.0 49.25 9.0 41.02 9.0 510.7 63.0
7 AAI 86.54 23.0 154.7 11.0 106.58 5.0 86.49 12.0 54.79 11.0 0.0 1.0 489.11 63.0
8 S.O.S 84.47 17.0 144.02 4.0 111.26 10.0 84.7 10.0 43.64 7.0 52.25 13.0 520.33 61.0
9 Aura 86.51 22.0 148.34 8.0 107.51 6.0 72.23 4.0 56.46 12.0 37.52 7.0 508.56 59.0
10 LarvicSaurus 28.23 1.0 154.17 10.0 110.56 9.0 90.97 15.0 48.66 8.0 60.03 14.0 492.62 57.0
11 SEU-UniRobot 23.65 1.0 148.29 7.0 110.29 8.0 60.89 1.0 27.45 1.0 29.09 6.0 399.66 24.0
12 Roshd 17.99 1.0 136.87 3.0 108.42 7.0 58.7 1.0 27.06 1.0 17.41 5.0 366.44 18.0

Semi Final
R Teams Istanbul2 Paris2 Mexico1 Berlin1 VC2 Kobe3 Total
1 ApolloRescue 150.98 6.0 126.44 7.0 203.45 11.0 102.34 16.0 50.86 14.0 91.33 16.0 725.4 70.0
2 Allameh Tab. 159.93 8.0 117.18 3.0 211.48 13.0 98.16 13.0 45.29 10.0 81.39 8.0 713.43 55.0
3 RoboAKUT 188.25 16.0 123.7 6.0 164.94 4.0 72.34 1.0 52.29 16.0 84.99 11.0 686.51 54.0
4 A.T.F 187.25 15.0 141.88 14.0 130.95 1.0 82.47 4.0 51.09 15.0 77.11 5.0 670.75 54.0
5 MRL 169.37 10.0 121.06 5.0 171.85 6.0 91.87 9.0 41.31 7.0 81.32 7.0 676.77 44.0
6 Aura 168.48 9.0 146.11 16.0 136.4 1.0 79.84 3.0 36.22 3.0 82.05 9.0 649.09 41.0
7 S.O.S 112.75 1.0 128.49 8.0 210.47 12.0 93.21 10.0 35.92 2.0 74.97 4.0 655.81 37.0
8 IR-Force 128.53 1.0 111.29 1.0 224.55 16.0 86.0 6.0 24.95 1.0 67.68 1.0 643.0 26.0

Final
R Teams Joao1 Eindhoven2 Mexico3 NY1 Berlin2 Istanbul3 Total
1 RoboAKUT 96.73 1.0 129.54 8.0 86.57 8.0 69.96 8.0 179.93 7.0 100.32 4.0 663.05 36.0
2 A.T.F 132.37 8.0 121.51 1.0 77.9 6.0 41.27 2.0 174.19 6.0 74.23 1.0 621.47 24.0
3 ApolloRescue 124.96 6.0 126.5 5.0 50.32 1.0 41.24 1.0 180.2 8.0 78.38 1.0 601.61 22.0
4 Allameh Tab. 92.13 1.0 122.3 1.0 56.09 1.0 43.99 3.0 127.32 1.0 128.1 8.0 569.94 15.0

4 RoboCup IranOpen 2017 Results

The performance of RoboAKUT in RoboCup IranOpen 2017 competition can be seen
in Table 1. RoboAKUT completed the preliminary round as the second, semi final as
the third, and win the competition by completing the final round as the first team. The
relative scoring punishes team if they are good at certain scenarios and worst in other
ones. The best team of the scenario gets the highest score and the worst team gets
1. Therefore, relative scoring enforces robust performances. RoboAKUT becomes the
worst team in final scenarios only once, becomes the best team three times.

References

[1] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

9

