
RoboCup 2018 – TDP Rescue Agent Simulation
RoboAKUT (Turkey)

H. Levent Akın, Okan Aşık, Gökçe Uludoğan, and H. Kübra Eryılmaz

Boğaziçi University, Turkey
[akin,okan.asik,gokce.uludogan,hatice.eryilmaz]@boun.edu.tr

http://robot.cmpe.boun.edu.tr/rescue/

Abstract. RoboAKUT is a multi-agent rescue simulation team that competes in
the RoboCup Rescue Agent Simulation League(RSL). It has been competing in
the RoboCup competitions since 2002 and has won the First Place in the agent
competition in RoboCup 2010 and in RoboCup IranOpen 2017. RoboAKUT code
base was rewritten to use Agent Development Framework(ADF) in 2017. The be-
havior of the agent is divided into two tasks; target selectors and action modules.
The target selectors choose the target for the agent and action module calculates
the simulator action to achieve the target. To be able to carry out these tasks, these
modules uses path planning, clustering, and exploration algorithms. We take the
greedy target selection approach and also added reward based exploration ap-
proach. We use the Hungarian algorithm for the optimal allocation of agents to
the clusters. We show that the total distance taken by all agents to reach the cluster
centers is reduced.

1 Introduction

RoboAKUT has been competing in the RoboCup Rescue Agent Simulation League
since 2002. We won the first place in RoboCup 2010 and in RoboCup IranOpen 2017,
and the third place in RoboCup 2017. We build our agent strategies using greedy al-
gorithms. As shown by Aşık and Akın [2], greedy algorithms have quite robust per-
formance in task allocation in search and rescue task. Agent Development Framework
(ADF) requires the development of two types of modules; target detectors, and action
generation. Target detector modules choose a target for the agent to act on. For ex-
ample, building detector module chooses a building on fire to extinguish. The action
generation module calculates the required simulation actions. For example, if the build-
ing selected by the building detector module is away from the agent, action generation
module calculates a path to the target and when gets near extinguishes the building.

We create clusters for every agent types using the k-means clustering algorithm such
that the same agent types cover the whole map. When choosing greedy targets, target
detectors firstly choose the targets from their own clusters, if there are any targets in the
cluster. If there is no target in the cluster, the target detectors select their targets from
whole map.

After creating clusters starting from random cluster centers, we assign one agent to
one cluster. Previously, we assigned agents greedily one by one. We get one agent find
the closest cluster center to the agent and assign the cluster to that agent. However, this

http://robot.cmpe.boun.edu.tr/rescue/

2 H. Levent Akın, Okan Aşık, Gökçe Uludoğan, and H. Kübra Eryılmaz

is not as effective as expected. Therefore, we use Hungarian assignment by calculating
the shortest path distance of agents to the cluster centers. This assignment results in the
optimal assignment of agents to the clusters.

We use Dijkstra’s shortest path algorithm to calculate a path between two locations.
However, we also keep track of blocked and opened roads regularly so that the agents
do not move on the path that is blocked. We use a priority queue to improve the com-
putational complexity of Dijkstra’s algorithm.

As an exploration method, we use a reward based algorithm. The agent keeps track
of the locations he/she has moved. When there is no target to act on, the agent chooses
an exploration target based on the reward of the targets. The reward of the target is
calculated as the count of unexplored locations to reach the target. Therefore, the agent
chooses the target that leads more exploration.

2 Modules

2.1 Clustering

The clustering algorithm is used to create a hierarchical task allocation for the agents.
By assigning every agent to a particular area (roads and buildings), we aim to achieve a
balanced distribution of the agents on the map. We have building clustering algorithm
for Fire Brigade and Ambulance Team agents and road clustering algorithm for Police
Force agents.

Building Clustering The buildings are clustered by k-means clustering algorithm [1].
We set the number of clusters same as the number of agents that are same type, such
as Fire Brigade agents. Firstly, the algorithm sets random cluster centers. Then, it it-
erates over the buildings and adds them to the closest cluster based on the air distance
to the cluster centers. Based on the members of the cluster, a new cluster center is cal-
culated. Finally, this process continues for a given number of iterations. An example
visualization of building clustering can be seen in Figure 1.

Road Clustering We would like to cluster the roads as a connected graph. Since the
Police Force agents need to clear roads, they need to move on the connected roads.
Therefore, if the road cluster is not a connected graph, the agent needs to move on the
other agents’ clusters. Also, we use task allocation scheme using leaf of the graph as
explained in Section 3.1.

We could use the k-means algorithm, but this would result in a disconnected graph
since the distances are measured as air distance. Also, some members of the clusters
could be close by air distance but might be very far away by the path distance (distance
that is needed to be covered by the agent). Therefore, we need to measure the distance
between the cluster center and the road by path distance. However, this requires the
shortest path calculation at the assignment of every road. This algorithm performs very
slow compared to air distance calculation. Therefore, we propose to use air distance,
but after k-means clustering, we use an algorithm to connect the disconnected graphs
of the cluster by the shortest path. Finally, the roads on the connecting shortest paths

RoboCup 2018 – TDP Rescue Agent Simulation RoboAKUT (Turkey) 3

Fig. 1: An example visualization of building clustering. The different colors represent
different clusters, but if two clusters with the same color becomes side to side they seem
like a single cluster (such as pink colored cluster).

are also added to the clusters. An example visualization of road clustering can be seen
in Figure 2.

Hungarian Agent-Cluster Assignment In the previous years, we used greedy assign-
ment of agents to the clusters. The greedy assignment iterates the agent and calculates
the shortest cluster center to the agent and assign this cluster to the agent. However, this
method is not as effective as expected since the total distance taken by whole agent team
is not optimal. Therefore, we use the Hungarian assignment algorithm [4]. We first cal-
culate a cost between every agent and every cluster. A shortest path is calculated from
the agent’s current position to the cluster centers. We set the cost of the assignment as
the travel distance of the agent to the cluster center. We want to find the minimum total
cost of tasking all agents to the assigned cluster centers. The Hungarian assignment al-
gorithm calculates the assignment that results in the minimum total cost. In Figure [?],
we show the percentage reduction in total cost of the Hungarian assignment in place of
Greedy assignment. We show that on average the agents will travel 10% to 15% less to
reach their cluster centers.

2.2 Path Planning

The path planning algorithm calculates the shortest path between two positions on the
map. The map of RSL simulator consists of roads and buildings. They construct a con-
nected graph where the edge between vertices are defined as the neighbors. The dis-
tance between neighbor roads and buildings are calculated as the distance between the

4 H. Levent Akın, Okan Aşık, Gökçe Uludoğan, and H. Kübra Eryılmaz

Fig. 2: An example visualization of road clustering. The different colors represent dif-
ferent clusters. These clusters create a connected graph so that some roads may be
member of more than one clusters.

Fig. 3: The percentage reduction of the total travel distance by agents compared to
greedy assignment.

RoboCup 2018 – TDP Rescue Agent Simulation RoboAKUT (Turkey) 5

centers of these areas. We use Dijkstra’s shortest path algorithm [3] to calculate the
shortest path between two areas. Dijkstra’s algorithm starts from the start vertex and
builds a path using the shortest path from possible neighbors. The complexity of the
algorithm is O(|E|+ |V |2), where E stands for the number of edges (neighbors) and
V stands for the number of vertices (areas). At every iteration the algorithm chooses a
vertex having the shortest path starting from the start vertex. By implementing the list
which keeps the paths sorted according to their distance as the priority heap, we can
reduce the complexity to O(|E|+ |V |log(|V |)).

We also keep track of the blocked roads and temporarily do not calculate them as
a neighbor for T time steps only for Ambulance Team and Fire Brigade agents. As the
agent moves on the map, the perceived roads are updated. This ensures the calculation
of a path that is clear of blockades. After T time steps, the blocked roads are reset and
assumed to be clear of blockades until the agent discovers that the road is still blocked.

3 Strategies

We do not use center agents to coordinate agents. The platoon agents use decentralized
greedy task allocation scheme.

3.1 Police Force

Police Force agent uses the Road Detector and the Clear Action modules. The detec-
tor module selects the target and action module calculates the action to carry out the
selected task.

Road Detector The road detector chooses a clearing target with a decision tree that
is tuned through experiments. The decision tree implements a priority based targets. At
every decision level, the agent checks the condition for the behavior of that level. For
example, if the agent perceives a human that is stuck in a blockade, clearing this block-
ade has the highest priority. The behaviors of the road detector is as follows starting
from the highest priority:

1. Clearing for a Human: The agent looks for humans (civilians or mobile agents)
in its world model. For every human, the agent checks whether the human is stuck
and alive. A human can be stuck in two ways; it is either just inside a blockade (a
polygon inside a road polygon), or a blockade is just in front of the building where
the human stays in. The agent chooses the closest of the stuck humans if there are
more than one stuck human.

2. Clearing the Cluster: If there is no agent to rescue in the world model of the agent,
the agent will clear the roads of its own cluster. Every agent has an assigned cluster.
The clustering algorithm assigns a cluster to every agent based on the distance
of the agent to the center of the clusters. The algorithm also ensures that every
cluster constructs a connected graph. The agent keeps track of the visited roads. The
ultimate aim of this behavior is to maximize the number of cleared roads. Therefore,
we formalize the problem as a task allocation where the tasks are the leaf nodes of

6 H. Levent Akın, Okan Aşık, Gökçe Uludoğan, and H. Kübra Eryılmaz

the cluster graph. We define the leaf as the node having only one edge. The utility
of a leaf node is calculated as the number of the unvisited roads that agent needs to
take to reach the leaf node. The path to a leaf node is calculated using a shortest
path algorithm. The behavior chooses a leaf node having the highest utility value
(see Figure 4)

A2

3

1

1
Fig. 4: An example illustration of cluster clearing behavior. The blue and green squares
represent the roads in the cluster. The visited ones colored as green. A represents the
agent position and values at the leaf nodes show the utility values calculated as the sum
of unvisited roads on the path.

Clear Action The module gets a target position to clear. However, that requires the
clearing of the blockades that are on the path to the target. Therefore, as the first step of
the algorithm, the shortest path between the agent and the target position is calculated.
The simulator clear action is a vector starting from the position of the agent. The module
creates clear vector towards the next position on the shortest path. If this clear vector
intersects with a blockade, the module needs to clear this blockade. If the clear vector
does not intersect, a new clear vector is created from the end point of the previous
one. This process continues until the clear vector reaches the end of the path. If the
clear vector intersects with a blockade, the module checks whether the agent can clear
the intersected blockade. If the agent is able to clear the blockade, a clear simulator
action is created and sent by the module. If the agent is not able to clear the blockade, a
simulator move action is created and sent by the module.

If the target selector module chooses a position to rescue a human from blockade,
the clear action needs to calculate a clear vector towards the position of the human. By
design, the target selector can choose only the areas to clear, therefore the clear action
needs to calculate the position of the human from selected position.

3.2 Ambulance Team

Ambulance Team agent uses Human Detector and Transport Action modules.

Human Detector The human needs to be rescued when it is buried or wounded. If
a human is buried, the agent needs to rescue the agent from the debris. If a human is
wounded, the agent needs to transport the human to the refugee. The human detector

RoboCup 2018 – TDP Rescue Agent Simulation RoboAKUT (Turkey) 7

module assigns humans that need to be rescued or transported to the agents. This mod-
ule makes a central assignment similar to the building detector based on the distance of
the agents to the humans which need to be rescued.

Transport Action The transport action calculates a simulator action for the selected
human. If the target human and the agent is not on the same position (road or building),
the module calculates a shortest path to move to the position of the target. Once the
agent and the target is on the same position, the module creates and sends a rescue action
if the human is buried and the module creates and sends a load action if the human is
not buried and is wounded. After the human is loaded to the agent, it is transported to
the shortest refugee and unloaded there.

3.3 Fire Brigade

Fire Brigade agent uses the Building Detector and the Extinguish Action modules.

Building Detector The building detector algorithm chooses building targets in two
ways: reactive planning and general allocation. In reactive planning, the module gets
all the buildings in the extinguish range that are on fire and chooses randomly one of
them. Firstly, in our experiments, we see that the reactive behaviors are quite effective
despite their simplicity. Secondly, since we do not coordinate the firefighting agents, we
reduce the resource inefficiency due to error in allocations. Random selection ensures
the equal distribution of agents for a given set of targets. The algorithm is concurrently
running for every agent and the agents may not know the current position of other
agents. If an agent does not get any message or does not perceive other agents, it uses
the last position of the other agents. If the agent does not have information about the
other agents after the start of the simulation, it uses the initial position of the agent.
Although this looks like an ineffective method, since agents generally moves around
their starting position, it becomes a good approximation for the position of the agent.

If there is no building in the extinguish range, the module uses general allocation
and assigns buildings on fire to all the agents based on the distance between the building
and the agent. The algorithm iterates over the buildings on fire and gets two closest
agents to the building at every iteration. If this is the agent that is running the algorithm,
it is assigned to the current building and iteration ends. If the agent is not one of two
agents, these agents are removed from agent list, and the algorithm continues with the
next building.

Extinguish Action The extinguish action calculates a simulator action for the selected
building that is on fire. If the agent needs to refill its tank, the module calculates a short-
est path to the closest refugee. If the agent has water, it creates and sends an extinguish
simulator action for the target building. If the building is not on the extinguish range,
the agent creates and sends a move simulator action by calculating the shortest path to
the target building.

8 H. Levent Akın, Okan Aşık, Gökçe Uludoğan, and H. Kübra Eryılmaz

4 Conclusions

We implement a decentralized greedy strategy for the rescue task allocation problem.
The agents reactively choose their targets such as closest building that is on fire. If they
perceive another agent, they implicitly coordinate their target selections based on the
priority calculated by their ids. We also keep track of the agents’ movement on the map
to calculate better search targets and marking blocked paths. We have shown that the
approach has promising results by finishing the first title in RoboCup Iran Open 2017,
and third title in RoboCup 2017.

References

1. Alpaydin, E.: Introduction to machine learning. MIT press (2014)
2. Aşık, O., Akın, H.L.: Effective multi-robot spatial task allocation using model approxima-

tions. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016: Robot World Cup
XX. pp. 243–255. Springer International Publishing, Cham (2017)

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik
1(1), 269–271 (1959)

4. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics
(NRL) 2(1-2), 83–97 (1955)

	RoboCup 2018 – TDP Rescue Agent Simulation RoboAKUT (Turkey)

