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Abstract. AIT-Rescue 2019 aims to introduce a task assignment strat-
egy using a max-sum algorithm for the distributed constraint optimiza-
tion problem (DCOP) algorithm. Agents are centrally assigned appropri-
ate tasks by center agents because it is difficult for agents to distributedly
assign tasks using the DCOP algorithm on the RRS system to introduce
the DCOP algorithm. Thus, our new agents can behave more decentrally
than our agents in RoboCup 2018. The results of some experiments con-
firmed that AIT-Rescue 2019 works better than our agents from last
year.

1 Introduction

An important problem on RRS is the task assignment problem, which is the
problem of assigning tasks to agents to minimize the costs (or maximize the
benefits) of the tasks that each agent works on. The problem can be modeled
as the distributed constraint optimization problem (DCOP) in multi-agent sys-
tems. The problem modeled as the DCOP is solved by the DCOP algorithm. In
this paper, approximate solution methods for the DCOP are called as DCOP
algorithms.

RMASBench [3] was proposed as a system to solve the task assignment prob-
lem on RRS using a DCOP algorithm and evaluate the algorithm, and to eval-
uate the effectiveness of the algorithm on the RRS. In RMASBench, a center
agent, who can perceive all the information about a target map in a simula-
tion, centrally assigns tasks properly with using DCOP algorithms. Research on
RMASBench [6] has demonstrated that the DCOP algorithm works effectively
for the RRS task assignment problem. However, for the current RRS, the cen-
ter agent is restricted to information observable by the simulation system. This
makes a distributed approach for task assignment on RRS difficult, even though
a DCOP algorithm is essentially a type of decentralized algorithm.

Hence, we implement center agents with a similar algorithm to the designed
algorithm on RMASBench and verify effectiveness of our algorithm in the cur-
rent simulator system of RRS. Almost all operations of the center agents in
RMASBench can be replaced with the Target Allocator module of RCRS-ADF.
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Therefore, we design and implement the ambulance center, fire station and po-
lice office, which work centrally for task assignment using the DCOP algorithm,
and conduct some experiments to compare our agent with other agents.

In Section 2 we describe DCOP, that is similar to our paper [5] for the
infrastructure competition in 2019, a max-sum algorithm as a major algorithm
to solve the DCOP, and the behavior of our implemented max-sum algorithm.
In Section 3, we present an application the max-sum algorithm on RRS. We
describe evaluations for our agents through some experiments in Section 4. As a
result, we confirmed that our agent works effectively, even if it is on the current
RRS.

2 Modules

In this section, we describe the modules to implemented for AIT-Rescue 2019 in
detail. First, we provide definition of the DCOP and behavior of the max-sum
algorithm. Second, we briefly provide an overview of the implemented agent of
RoboCup 2018 and the implementation to clarify features of our agent in this
year.

2.1 Overview

AIT-Rescue 2019 adopts the max-sum algorithm, that is, the DCOP algorithm,
for the task assignment problem. The center agents centrally assign tasks to
platoon agents in this approach. This results from the difficulty in applying the
DCOP algorithm to the platoon agents.

One step of the time difference occurs between sending messages and receiv-
ing messages in the RRS system, even though the simulation time of RRS is
around 300 steps. the max-sum algorithm is a type of message propagation algo-
rithm, as mentioned in Section 2.3, and requires sending and receiving messages
many times. Additionally, the scenario status gradually changes for each step be-
cause the simulated disaster space dynamically changes on RRS. Therefore, the
simulated disaster space is changed steadily before the max-sum algorithm con-
verges the assignment for each step. In the other words, it is almost impossible
that DCOP algorithm behavior with such a communication system on RRS.

Therefore, our agent achieves task assignment using the DCOP algorithm by
minimizing such a delay using the following procedure:

– All platoon agents send messages to each center agent.
– The center agent propagates internally pseudo-multiple messages extracted

based on the received messages.
– The center agent sends assigned tasks to each agent in turn.

Thus, we implemented Target Allocator modules responsible for the task assign-
ment of the center agents in AIT-Rescue 2019, as shown in Figure 1.

Additionally, the modules that we implemented in 2018 are Target Detector
modules for the task assignment of the platoon agents, Search modules responsi-
ble for the searching platoon agents, Ext Action modules for action control of the
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platoon agents, and the Path Planning module responsible for the fundamental
algorithm to the other modules, as shown in Figure 1.

CentralizedComplex Modules

Self

Center

Algorithm Modules

Fig. 1: RCRS-ADF modules and the range of our implementation

2.2 Distributed Constraint Optimization Problem

The distributed constraint optimization problem (DCOP) is the problem of de-
termining a combination of variable values that maximize utility when they have
a constraint between a variable that corresponds to a distributed agent and other
variables. The definition of the DCOP is as follows [2]:

A “ ta1, . . . , anu

is a set of agents, where ai is an agent.
X “ tx1, . . . , xmu

is a set of variables. However, m ŕ n, where m is the number of variables
and n is the number of agents.

D “ tD1, . . . , Dmu

is a set of ranges for each variable xi P X, where Di represents the range of
corresponding variable xi.

F “ tf1, . . . , fku

is a set of functions (called utility functions) that express constraints between
variables. The utility function is represented by the following expression:
fi :

Ś

xjPxi Dj Ñ R, where xi is the set of variables whose constraint relation
is represented by fi. The utility function maps a combination of arbitrary
values included in the value range for each variable of xi to a real number.
The value obtained by the utility function is called the “utility.”

α : X Ñ A
is a mapping function that expresses the relationship between an agent and
variable. Each agent corresponds to a distinct variable.
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Objective function FgpXq for an optimization is defined as

Fg pXq “
ÿ

fiPF

fi
`

xi
˘

(1)

by the utility functions.
Then, optimized assignment σ˚, which maximizes FgpXq, is expressed as

σ˚ “ argmax
σPD

Fg pσq (2)

In this case, D is a direct product set of all ranges in D, which means a set of
possible assignments. Note that Eq. (2) is used only when the combination that
maximizes the objective function is the optimized assignment.

2.3 Max-Sum Algorithm

The max-sum algorithm is a major approximate solution methods for the DCOP
and a type of message propagation algorithm[8]．It optimizes the overall utility
by propagating the utility to each constraint. The target of this algorithm is
a problem that can be modeled as the factor graph. The factor graph is an
undirected graph that consists of variable nodes that represent variables, factor
nodes that represent utility functions between variable nodes, and edges that
represent mutual relationships between variable nodes and factor nodes. An
example of the factor graph is shown in Figure 2.

Fig. 2: Example of the factor graph

In Figure 2, the factor node has a constraint, which is a utility function,
to neighboring variable nodes. Additionally, a corresponding agent calculates a
utility for each variable value according to its own range and the constraints of
the neighbor factor nodes in the variable node. First, initial utilities are calcu-
lated in variable nodes by corresponding agents according to the condition. Then
the utilities gradually propagate to other variable nodes through neighbor factor
nodes. The propagation (calculation) continues until the updating of utilities is
stopped, or when the designated iteration number is reached.
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The following is an evaluation function [6], and is used when the variable
node x of the equation sends the utility on a value of the variable node to factor
node f :

µxÑf pxq “
ÿ

gPN pxqztfu

µgÑx pxq , (3)

where x is the value that is calculated by an appropriate agent and included
in the range of variable node x; N pxq is the set of factor nodes that neighbor
variable node x; and µgÑx is a utility calculated on factor node g and sent to
variable node x.

Eq. (3) calculates the sum of the utilities received from neighbor factor node,
except for the factor node that is the destination. The calculated value is in the
range of variable node x.

The following is an evaluation function [6], and is used when factor node f
sends the utility on a value to variable node x:

µfÑx pxq “ max
Y

˜

f px,Yq `
ÿ

yPY

µyÑf pyq

¸

, (4)

where Y is the set of variable nodes that neighbor factor node f , except for
x; Y is the set of values that are calculated by appropriate agents on Y ; µyÑf

is the utility from the variable node y to the factor node f ; and y is the value
of the variable node y that is included in Y.

Eq. (4) calculates the maximum value of the sum of a value of a utility
function for x and Y and a sum of µyÑf for y P Y on Y.

When the propagation is complete, the optimal assignment is calculated by

σ˚ “ argmax
xPX

ÿ

fPN pxq

µfÑx pxq . (5)

Eq. (5) calculates an assignment that maximizes the sum of values of utility
functions for each factor node.

2.4 Target Allocator

The behavior of the max-Sum algorithm implemented on the Target Alloca-
tor module of AIT-Rescue 2019 is shown in Algorithm 1. First, each platoon
agent sends messages of tasks observed by the agents via radio communication.
When a center agent of the fire brigades, police forces, and ambulance teams
receives the task messages, the center agent updates the task information held
and holds the information to create a factor graph. Additionally, each platoon
agent sends a message, MessageReport, to report the successful completion of
a task. Therefore, the center agents can remove the completed task from the
holding information.

Second, each center agent creates a factor graph, which connects all platoon
agents and tasks as variable nodes and factor nodes, respectively. The center
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agents repeatedly calculate new utilities by propagating calculated utilities in
the previous step on the factor graph. The calculation repeats until the values
of the utilities stop changing or the designated iteration number is reached. The
utility functions to calculate the utilities are described in Section 3.

Finally, according to the assignment, each center agent sends messages of
assigned tasks to the platoon agents.

However, each platoon agent receives the assigned task after two steps from
sending the messages because of the delay of one step described above. Addition-
ally, if there is more than one center agent in each type, then the center agent
with the minimum Entity ID works according to the algorithm.

Algorithm 1 Behavior of the max-sum algorithm on the center agents

Receive task information messages from each platoon agent.
Update the task information held according to the received messages.
Create a factor graph according to the task information held.
for 0 to arbitrary iteration number do

Calculate and update the utilities of each value in each nodes.
Propagate pairs of values and the corresponding utility from each node to its
neighbor nodes.
Decide an assigning task by selecting the value with the maximum utility in each
factor node.
Send messages of assigned task information to each platoon agent.

end for

2.5 Other Modules

AIT-Rescue 2019 uses the same modules as the 2018 version, except those de-
scribed above, although we will fix them of 2018 to exactly behave strategies that
described below before RoboCup 2019. We explain them briefly in this section.

The RCRS-ADF and the RRS-OACIS introduced in 2018 made it easier to
conduct a comparison experiment for each module. Therefore, we designed AIT-
Rescue 2018 based on the best combination of modules found through many
experiments with RCRS-ADF and RRS-OACIS.

In RoboCup 2019, we used the same modules as AIT-Rescue 2018, except
for modules mentioned above. The major modules are as follows[4]:

Target Detector This module prioritizes conditions of disaster scenarios that
are tasks, and selects a target according to the prioritized conditions in
descending order. For example, fire brigades select a target based on the
prioritized convex hulls constructed by vertices of burning buildings. Police
forces select a destination in each cluster that each police force belongs in,
which is an area on a map. Ambulance teams select a target based on the
prioritized buried depth and physical strength of observed civilians.

Search This module searches all buildings except for refuges, first, in a clus-
ter that a agents belongs in on a map, and second, in the map, as search-
candidates that are referring to buildings. From the candidates, the closest
building that Path Planning module calculated is selected as a target.
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Ext Action First, with respect to a move action, this module attempts to ar-
rive at an observable location of the target even if the path to the target
is blockaded. Although fire brigades essentially calculate the shortest path
considering blockages, the module simply calculates the shortest path with-
out considering blockages. Second, with respect to disaster relief actions,
the module prioritizes some conditions using more detailed disaster scenar-
ios than the Target Detector module, and selects an action according to the
prioritized conditions in descending order.

Path Planning This module calculates the shortest path using the Dijkstra
algorithm[1]. The Ext Action module uses this module to calculate a more
detailed shortest path than the sample module of RCRS-ADF.

3 Strategies

In this section, we describe an approach to model the task assignment problem
on RRS to the DCOP and how to adapt the model to max-sum algorithm.
Some parts of the utility functions change in accordance with the types of agent.
Because the task assignment problem in RRS differs depending on the type
of agents. Therefore, we explain the difference between these task assignment
problems for each type of agent.

3.1 Task Assignment Problem in RRS

We model the task assignment problem in RRS as the DCOP, in accordance
with the definitions described in Section 2.2 as follows:

A “ ta1, . . . , anu

represents the set of all agents that exist in a simulation.
X “ tx1, . . . , xnu

denotes set of variables xi that represents the task selected by the agent
ai P A. A task that is eventually the value of xi P X means a task that the
ai will take.

D “ tD1, . . . , Dnu

denotes the set of task set Di that agent ai P A can be select. Di P D for an
agent is composed of the following two elements:
– multiple disaster relief tasks for various disasters that ai recognizes; and
– a single situation search task that ai performs to recognize a simulation

situation.
The situation search tasks are gathered into only one task because RRS-
ADF handles that assigning disaster relief tasks and situation search tasks
to agents as different problems.

F “ tf1, . . . , fku

denotes the set of utility functions fj that correspond to the combination
referring to variables, of value xi of variable xi P X. We evaluate disaster-
relief tasks according to the cost of the tasks, and the penalty based on
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the lack of the necessary number of assigned agents to the tasks. The cost
indicates the number of necessary steps to move to the task and the penalty
indicates a value that differs according to the task assignment for each type
of agent.

α : X Ñ A
represents the function that determines the agent ai P A that manages the
variable xi P X. Because the RRS agent cannot perform more than one task
simultaneously, the variable managed by the agent ai P A is always limited
to one variable. Therefore, this function is always bijection.

From the above definition, an objective function of the task assignment in
RRS is defined as

Fg pXq “
ÿ

xPX

C pα pxq ,xq `
ÿ

dP
Ťn

i“1 Di

P pd, |tx|x “ d ^ x P Xu |q (6)

by way of

C pa, dq “

#
?

pXa´Xdq2`pYa´Ydq2

τ if d is a disaster relief task

0 if d is a situation search task
(7)

P pd, nq : function that calculates the penalty

of n agents assigned to d

x : The value of the variable x

Xa : X coordinate at which ai its located

Ya : Y coordinate at which ai its located

τ : constant that represents the estimated value

of the movable distance per step p0 ă τq

Furthermore, we apply the task assignment of RRS modeled as the DCOP to
the max-sum algorithm. The max-sum algorithm uses utility functions related
to agents and factor nodes. Additionally, the utility function related to a single
agent is used on the variable node. Hence, objective function FgpXq shown in
Eq. (6) is divided according to the relationship among the agents and, used as a
utility function. The following shows the utility function fMSV pxiq that is used
for the variable node xi to calculate the cost required for the agent to work on
the tasks:

fMSV pxiq “ C pα pxiq ,xiq (8)

and

fMSF pdjq “ P pdj , |tx|x “ dj ^ x P N pdjqu|q (9)
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shows the utility function fMSF pdjq that calculates penalties from task dj and
the set of neighbor variable nodes used on the factor node related to task dj .
Because utility function fMSF pdjq calculates penalties according to the number
of agents assigned to task dj , it is considered as cardinality-based potential [7].

3.2 Ambulance Center

Regarding task assignments for the ambulance center, an agent is an ambulance
team and a disaster relief task is a civilian rescue task. Information about the
tasks is shared between the ambulance center and other agents using Message
Civilian. Then, a task reported by Message Report described in Section 2.4 is
regarded as already completed task, and is not assigned an agent.

We define

P pd, nq “

$

&

%

ρ

"

1 ´

´

minpREQpdq,nq

REQpdq

¯2
*

if d is a civilian rescue task

0 if d is a situation search task
(10)

as the utility function that calculates a penalty with

REQpdq “
BDd ˆ DTd

HPd
` 1 (11)

BDd : buried depth of the civilian in task d

DTd : physical strength that the civilian in task d loses per step

HPd : physical strength of the remaining civilians in task d

ρ : constant that represents a penalty p0 ő ρq

3.3 Fire Station

Regarding task assignments for the fire station, an agent is a fire brigade and a
disaster relief task is a task to extinguish the fire in a burning building. Infor-
mation about the buildings is shared between the fire station and other agents
using Message Building. Then, the burning building neighbor to one or more
non-burning buildings is regarded as a task. The task reported by Message Re-
port is not assigned to an agent.

We define

P pd, nq “

$

&

%

ρ

"

1 ´

´

minpREQpdq,nq

REQpdq

¯2
*

if d is a building extinguish task

0 if d is a situation search task

(12)



10 Authors Suppressed Due to Excessive Length

as the utility function that calculates a penalty with

REQpdq “
FR2

d ˆ V Ld

υ
(13)

FRd : burnup of a building in task d

V Ld : volume of a building in task d

υ : constant that represents the estimated volume

that an agent can extinguish per step p0 ő υq

ρ : constant that represents a penalty p0 ő ρq

3.4 Police Office

Regarding task assignments for the police office, an agent is a police force and
a disaster relief task is a task to clear all blockages on a road. Information
about roads is shared between the police office and other agents using Message
Road. Then, the road that has a blockage around any police force is regarded
as a task. Additionally, the road that another agent has requested to clear from
other agents is also regarded as a task. The task reported by Message Report is
handled similarly to those of other agents.

We define

P pd, nq “

#

PRIpdq ˆ ρ
!

1 ´ min p1, nq
2
)

if d is a blockage clear task

0 if d is a situation search task
(14)

as the utility function that calculates a penalty with

PRIpdq “

$

’

’

’

’

&

’

’

’

’

%

ν if there has been a request to clear a road in d

ϵ if a road in d is an entrance to a building

ARd

max
rPR

ARr
otherwise

(15)

ARd : area of the road in task d

R : set of all roads in the simulation

ν, ϵ : constants that represents coefficients on the specific tasks

p1 ő ϵ ő νq

ρ : constant that represents a penalty p0 ő ρq
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4 Preliminary Results

In this section, we present an experiment to verify the effectiveness of our central-
ized task assignment with the max-sum algorithm. We use two types of agents to
evaluate our centralized task assignment module: one is simply the sample agent
of RRS-ADF and the other is the agent who is assigned proper tasks by the
DCOP algorithm on the sample agent (AIT-Rescue 2019). However, all platoon
agents work only on tasks assigned by the Target Allocator modules. If an agent
is not assigned to a task, then the agent searches its own surroundings. The
constants of the utility functions defined in Section 3 are τ “ 28000, ρ “ 600，
υ “ 500，ν “ 2, and ϵ “ 1.5 in the experiment. The iteration number described
in Section 2.4 is 100.

The maps for this experiment are Eindhoven2, Paris1, Sakae1 used in RoboCup
2018. The maps contain at least one center agent of each type. Additionally, we
expand the bandwidth of communication to the maximum and disable its noise
because our modules have not responded to such a situation yet.

Table 1 shows the experimental results. The results are averages and standard
deviations, which are the numbers in parentheses, of scores for 20 simulations
for each agent and map. As a comparison, the table also includes the results of
AIT-Rescue 2018.

Table 1: Experimental results
Scenario

Agent Eindhoven2 Paris1 Sakae1

AIT-Rescue 2019 66.83 (˘0.86) 15.07 (˘6.15) 9.99 (˘0.15)
Sample 64.43 (˘0.49) 11.40 (˘4.32) 9.74 (˘0.13)

AIT-Rescue 2018 64.64 (˘0.33) 9.98 (˘0.25) 9.75 (˘0.16)

Table 1 shows that all the scores of AIT-Rescue 2019 are the highest for
all maps. Hence, this means that our implemented module worked effectively in
RRS. However, the standard deviations of the scores tends to be higher. This
implies that our module properly used random search as needed. Therefore, this
shows that our agents not assigned to tasks searched for new information.

5 Conclusions

We implemented the Target Allocator module on center agents of AIT-Rescue
2019 to assign tasks centrally to platoon agents using the max-sum algorithm.
Moreover, we conducted experiments to compare our agent with other agents.
As a result, we confirmed that our agent obtained higher scores than those of
the other agents.

Therefore, we confirmed that centralized task assignment with the max-
sum algorithm works effectively, even in the current simulation system of RRS.
We plan to include the idea of corporations among heterogeneous agents for
RoboCup 2019. Additionally, we would like to make our agent work even if
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the communication among agents includes noise. Agents need to select a task
not only using Target Allocator but also choose it themselves by referring to a
suggestion of Target Allocator, to achieve our ideas.
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