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Abstract. The “task assignment problem” of RoboCupRescue Simula-
tion (RRS) can be regarded as a Distributed Constraint Optimization
Problem (DCOP). However, it is difficult to apply the DCOP algorithm
to the problem on the current simulator. In this paper, we propose an
extension on RRS-ADF for the difficulty. We introduce a new commu-
nication system that agents can use to communicate repeatedly within
each step of this extension. Furthermore, we also describe an example
that applies a DCOP algorithm, and then discuss its effectiveness. The
results confirmed that our extension is effective.

1 Introduction

A typical problem in RoboCupRescue Simulation (RRS) is the task assignment
problem. The task assignment problem consists of determining an approach to
assign n agents to m tasks according to their purpose. This problem can be
modeled as a Distributed Constraint Optimization Problem (DCOP) [4]. RMAS-
Bench [2] was proposed as an attempt to solve the task assignment problem of
RRS using a DCOP and its algorithm. RMASBench is a benchmark system
for the task assignment problem that introduces pseudo-agents and pseudo-
communication between them on the RRS system. Research on RMASBench [3]
has demonstrated that the DCOP algorithm works effectively for the task as-
signment problem on RRS.

Therefore, in this research, we propose an extension of RRS-ADF to use
the DCOP algorithm in the task assignment problem on RRS. However, since
RMASBench introduced pseudo-communication, it is difficult to use the DCOP
algorithm on the current simulator. Therefore, the extension proposed in this
research provides a similar pseudo-communication system on the present system.
Additionally, we confirm that it operates effectively by applying the max-sum
algorithm [6] which is a typical approximate solution method for the DCOP.

In Section 2, we first describe the DCOP, max-sum algorithm, and RMAS-
Bench as background information. In Section 3, we describe the pseudo-commun-
ication system that we introduce and the extension of RRS-ADF that uses this
system. In Section 4, we apply the DCOP to the task assignment problem of
ambulance teams and implement the max-sum algorithm for the problem on the
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extension. In Section 5, we present the experiment used to confirm that our ex-
tension and the max-sum algorithm implementation work effectively. As a result
of the experiment, we confirm that they work sufficiently well.

2 Background

2.1 DCOP: Distributed Constraint Optimization Problem

The DCOP is the problem of determining a combination of variable values that
maximize utility when they have a constraint between a variable that corre-
sponds to a distributed agent and other variables. The definition of the DCOP
is as follows [1]:

A “ ta1, . . . , anu

is a set of agents, where ai is an agent.

X “ tx1, . . . , xmu

is a set of variables. However, m ŕ n, where m is the number of variables
and n is the number of agents.

D “ tD1, . . . , Dmu

is a set of ranges for each variable xi P X, where Di represents the range of
corresponding variable xi.

F “ tf1, . . . , fku

is a set of functions (called utility functions) that express constraints between
variables. The utility function is represented by the following expression:
fi :

Ś

xjPxi Dj Ñ R, where xi is the set of variables whose constraint relation
is represented by fi. The utility function maps a combination of arbitrary
values included in the value range for each variable of xi to a real number.
The value obtained by the utility function is called the “utility.”

α : X Ñ A
is a mapping function that expresses a relationship between an agent and a
variable. Each agent corresponds to a distinct variable.

Objective function FgpXq for optimization is defined as

Fg pXq “
ÿ

fiPF

fi
`

xi
˘

(1)

by the utility functions. Then, the optimized assignment σ˚ which maximizes
FgpXq, is expressed as

σ˚ “ argmax
σPD

Fg pσq (2)

In this case, D is a direct product set of all ranges in D, which means a set of
possible assignments. Note that Eq. (2) is used only when a combination that
maximizes the objective function is the optimized assignment.
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2.2 Max-Sum Algorithm

The max-sum algorithm is one of the major approximate solution methods for
the DCOP. It optimizes the overall utility by propagating the utility to each
constraint. The target of this algorithm is a problem that can be modeled as
the factor graph. The factor graph is an undirected graph that consists of vari-
able nodes that represent variables, factor nodes that represent utility functions
between variable nodes, and edges that represent mutual relationships between
variable nodes and factor nodes. An example of the factor graph is shown in
Figure 1.

Fig. 1: Example of the factor graph

In Figure 1, the factor node has a constraint, which is a utility function,
on neighboring variable nodes. Additionally, a corresponding agent calculates a
utility for each variable value according to its own range and the constraints
of the neighboring factor nodes in the variable node. First, initial utilities are
calculated in variable nodes by corresponding agents according to the condition.
Then the utilities gradually propagate to other variable nodes through neigh-
boring factor nodes. The propagation (calculation) continues until the updating
of utilities is stopped or when the designated iteration number is reached.

The following is an evaluation function [3], and is used when variable node
x of the equation sends the utility on a value of the variable node to the fac-
tor node f :

µxÑf pxq “
ÿ

gPN pxqztfu

µgÑx pxq (3)

where x is the value calculated by an appropriate agent and included in the range
of the variable node x; N pxq is a set of factor nodes that neighbor variable node
x; and µgÑx is the utility calculated on factor node g and sent to variable node x.
Eq. (3) calculates the sum of the utilities received from neighboring factor nodes
except for the factor node that is the destination. The calculated value is in the
range of variable node x.

The following is an evaluation function [3], and is used when factor node f
sends the utility on a value to variable node x:
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µfÑx pxq “ max
Y

˜

f px,Yq `
ÿ

yPY

µyÑf pyq

¸

(4)

where Y is the set of variable nodes that neighbor factor node f except for x,
Y is the set of values that are calculated by appropriate agents on Y , µyÑf is
the utility from variable node y to factor node f , and y is the value of variable
node y that is included in Y. Eq. (4) calculates the maximum value of the sum
of a value of a utility function for x and Y, and a sum of µyÑf for y P Y on Y.

When the propagation is complete, the optimal assignment is calculated by

σ˚ “ argmax
xPX

ÿ

fPN pxq

µfÑx pxq (5)

Eq. (5) calculates an assignment that maximizes the sum of values of utility
functions for each factor node.

2.3 Previous Research: RMASBench

RMASBench was proposed in 2013 to conduct DCOP research of RRS. It is a
benchmark system for the task assignment method for multi-agent systems, and
an evaluation system for DCOP algorithms.

The system structure of RMASBench is illustrated in Figure 2. The cen-
ter agent can obtain current states from each agent and current situations of
the disaster simulation from the kernel. Additionally, the system introduces a
pseudo-communication layer (communication layer) and pseudo-agents (DCOP
agent) that correspond to agents on the pseudo-communication layer, so that
the pseudo-agents can communicate without restrictions imposed by the RRS
system. Then, the center agent performs task assignments by making the pseudo-
agents send and receive many messages repeatedly in the layer. The result of the
task assignments on the pseudo-agents is communicated to the agents from the
center agent directly.

Fig. 2: System structure of RMASBench
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This approach achieves the application/implementation of DCOP algorithms
to the task assignment problem of RRS. However, this approach cannot solve
the task assignment problem based on the local communication of the DCOP,
although it can solve the problem based on global communication.

3 Extension of RRS-ADF for Task Assignment to Solve
the DCOP and a Pseudo-Communication System

3.1 Necessity of Multiple Communications within a Step with the
Pseudo-Communication System

The max-sum algorithm requires sending and receiving many messages repeat-
edly to propagate utilities among agents. By contrast, agents of RRS can send/re-
ceive messages only once within one step, which means 1 minute in real time
because agents of RRS are assumed to communicate by voice. Therefore, multi-
ple steps are required to execute the algorithm.

The DSA is one of the major approximate solution methods for DCOP similar
to the max-sum algorithm. The experiments of Zhang et al. [7] demonstrated
that the DSA requires approximately 60 iterations to converge to a solution. By
contrast, RRS performs from 200 steps to 300 steps. This fact means that it is
difficult for RRS to use the DSA effectively because the algorithm requires many
steps.

To solve this problem, RMASBench enables multiple communications within
each step, with a mechanism different from the simulator of RRS. In this paper,
we introduce a pseudo-communication system that realizes such a communica-
tion mechanism.

3.2 Communication Condition in a Pseudo-Communication System

In a pseudo-communication system, messages sent from agent ai are received by
other agents aj , satisfying

b

`

Xai ´ Xaj

˘2
`

`

Yai ´ Yaj

˘2
ő CR, (6)

Xai
: X coordinate at which ai is located

Yai
: Y coordinate at which ai is located

CR : Communication radius centering on an agent

3.3 Design of the Pseudo-Communication System

It is difficult to extend the communication system of the current simulation
kernel, to introduce a pseudo-communication system. Therefore, our pseudo-
communication system uses a new pseudo-communication server that manages
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communication among agents, and a new pseudo-communication client for cur-
rent agents. In the max-sum algorithm, an agent needs to synchronize with the
other agents when the agent sends/receives each message. Agents that intend to
communicate with the other agents need to send/receive each message repeatedly
until all agents lose the intention to continue communication.

The pseudo-communication server receives the following information from
clients to confirm whether the communication condition is satisfied:

– X and Y coordinate where the agent is located; and

– intention to continue communication.

When all agents lose the intention to continue communication, the server
regards the simulation step as complete and initializes the states of the agents
on the server.

3.4 Implementation of a Task Assignment Module for the DCOP
with Our Pseudo-Communication System

We implemented a task assignment module (DCOP Target Detector) using the
pseudo-communication system. This module was implemented by inheriting the
task assignment module (Target Detector) of RRS-ADF. DCOP Target Detector
internally manages a pseudo-communication client and assigns a task to its agent
based on the communications of a DCOP algorithm. Figure 3 shows the program
structure and data flow in the RRS simulator with our extension.

In this approach, the pseudo-communication server is implemented as an in-
dependent program with the kernel. Additionally, the server receives information
required for communication from agents. However, when we used this system for
competitions, we assumed that it was appropriate to implement it as an ex-
tension to the communication component of the kernel from the viewpoint of
fairness.

In DCOP Target Detector, the following procedure is executed:

1. Initialize state (according to the user definition).

2. Receive all messages simultaneously.

3. Execute task assignment based on the DCOP algorithm (according to the
user definition).

4. Send all messages simultaneously.

5. Return to step 2 and repeat to step 4, if necessary

In step 3, the module returns the task that is assigned to the agent, and whether
a repeat of the procedure is required. In step 5, the module repeats in the case
in which a repeat is required in step 3 or until the number of repeats reaches the
defined limit. To execute this procedure, DCOP Target Detector provides the
new methods shown in Table 1. The user then has to define the method shown
in Table 2.
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Fig. 3: Part of the program structure and the data flow

Table 1: Methods provided by DCOP Target Detector
Definition Explanation

void send(CommunicationMessage) Add a message to a blanket sending list
ListăCommunicationMessageą receive() Receive blanket received messages

Table 2: User-defined methods in DCOP Target Detector
Definition Explanation

void initialize() Initialize the state at
the beginning of the procedure

PairăEntityID, Booleaną improveAssignment() Execute task assignment

4 Applying the DCOP to RRS and Implementing the
DCOP Algorithm

4.1 Modeling the Task Assignment Problem of Ambulance Teams
as a DCOP

The task assignment problem is considered as an approach to determine an opti-
mal task with an evaluation function for each agent from a set of tasks recognized
by agents. When the definitions of the DCOP described in Subsection 2.1 are
applied to the task assignment problem, each element in the definitions has the
following meaning:

A “ ta1, . . . , anu

denotes the set of all ambulance agents existing in a simulation.
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X “ tx1, . . . , xnu

denotes the set of variables xi that represent the task selected by agent
ai P A. A task that is eventually the value of xi P X means a task that ai
will take.

D “ tD1, . . . , Dnu

denotes the set of a task set Di that agent ai P A can select. Di P D for an
ambulance team is composed of the following two elements:
– multiple rescue tasks for multiple civilians that ai recognizes; and
– a single situation search task that ai performs to recognize a simulation

situation.
The situation search tasks are gathered into only one task because of RRS-
ADF handles that assigning civilian rescue tasks and situation search tasks
to agents as different problems.

F “ tf1, . . . , fku

denotes the set of utility functions fj that corresponds to the combination of
value xi of variable xi P X. In the evaluation of civilian rescue tasks, the final
civilian survival number is the most important. Therefore, it is necessary to
minimize the cost of the tasks after assigning the number of agents required
to keep a civilian alive in each task. For the reasons stated above, objective
function FgpXq for civilian rescue tasks can be defined as

Fg pXq “
ÿ

xiPX

C pα pxiq ,xiq `
ÿ

dP
Ťn

i“1 Di

P pd, |txi|xi “ d ^ xi P Xu |q (7)

using the equations

C pa, dq “

#
?

pXa´Xdq2`pYa´Ydq2

τ (if d is a civilian rescue task)

0 (if d is a situation search task),
(8)

which is a function that calculates the length of time required by agent a to
start to execute task d;

P pd, nq “

$

&

%

ρ

"

1 ´

´

minpREQpdq,nq

REQpdq

¯2
*

(if d is a civilian rescue task)

0 (if d is a situation search task),
(9)

which is a function that determines the penalties arising from an insufficient
number of agents when n agents are assigned to task d; and

REQpdq “
BDd ˆ DTd

HPd
` 1 (10)

which is a function that estimates the number of agents required to rescue
the civilian in task d by considering the civilian’s current state, where
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x : value of variable x

BDd : the buried depth of the civilian in task d

DTd : physical strength that the civilian in task d loses per step

HPd : physical strength of the remaining civilians in task d

τ : constant representing an estimated value of

the movable distance per step p0 ă τq

ρ : constant representing a penalty p0 ő ρq

α : X Ñ A
denotes the function that finds agent ai P A that manages variable xi P X.
Because the RRS agent cannot perform more than one task simultaneously,
the variable managed by agent ai P A is always limited to one variable.
Therefore, this function is always bijective.

We then minimize the value obtained from Eq. (7). To obtain the same result
as objective function FgpXq, fitting utility function fj P F for the max-sum
algorithm is defined in Subsection 4.2.

4.2 Applying the Max-Sum Algorithm

In this section, we describe the method of forming a factor graph and its utility
functions to execute the max-sum algorithm.

Method for Forming a Factor Graph
As described in Subsection 2.2, the factor graph consists of variable nodes that
represent variables, factor nodes that represent utility functions between variable
nodes, and edges that connect a variable node to a factor node. The factor graph
has a feature such that a utility function affects multiple variables represented
as factor nodes. Such a utility function is needed for each task, such as function
P pd, nq shown in Eq. (9). However, tasks cannot manage the factor nodes. The
factor nodes are managed by the closest agent to the task’s location instead of
the task to solve such a situation. The nearest agent is determined by each agent
that received information from the other agents. When an agent for a factor node
and an agent for a variable node can communicate with each other according
to the restriction of the communication range, an edge is created between the
factor node and variable node. As an example of constructing a factor graph,
Figure 5 shows the factor graph constructed by an agent and a task that has the
relationship shown in Figure 4. The agent for variable node x3 is the closest to
the location of the task, and factor node f1 for the task is managed by the same
agent as x3.
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Fig. 4: Example of the communication availability
between agents and the task state

Fig. 5: Factor graph constructed from the state of Figure 4

Definition of the Utility Function
The max-sum algorithm uses utility functions related to agents and factor nodes.
Additionally, the utility function related to a single agent is used as the variable
node. Thus, objective function FgpXq shown in Eq. (7) is divided according to
a relationship among the agents and used as a utility function. The following
equations, respectively, show utility function fMSV pxiq, which is used for vari-
able node xi to calculate the cost required for the agent to work the task, and
utility function fMSF pdjq, which calculates penalties from the task and a set of
neighboring variable nodes used on the factor node related to task dj :

fMSV pxiq “ C pα pxiq ,xiq (11)

fMSF pdjq “ P pdj , |tx|x “ dj ^ x P N pdjqu|q (12)

Additionally, the method [5] proposed as the cardinality-based potentials is ap-
plied to the calculation on the factor node because utility function fMSF pdjq of
the factor node calculates the utility based on the number of assigned agents.

5 Experiment and Consideration

5.1 Experimental Method

In this section, We confirm the effectiveness of our proposed approach. We, there-
fore, check whether our task assignment method with the max-sum algorithm
works properly.
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In this experiment, our implemented max-sum algorithm is compared with
the Closest1 and Greedy2 methods with respect to the task assignment of RRS.
These three methods were evaluated in the simulation result, that is, the “score”,
of RRS through some simulations. In this experiment, the VC3 and the Eind-
hoven3 scenarios of RoboCup 2018 were used, except entities that were not re-
lated to the ambulance team and rescue of civilians were removed from those sce-
narios. Furthermore, four types of communication range (distance) were applied
to each scenario because the results of the simulations were strongly influenced
by communication ranges.

Each scenario had the following features:

VC3
Platoon agents were densely located while the locations of refuges and civil-
ians were dispersed.

Table 3: Simulation settings of VC3
Initial score Refuges Ambulance teams Civilians

293.0 5 32 292

Eindhoven3
The locations of platoon agents were more dispersed than for VC3. The
locations of refuges and civilians were also dispersed.

Table 4: Simulation settings of Eindhoven3
Initial score Refuges Ambulance teams Civilians

401.0 4 15 400

5.2 Experimental Results

Tables 5 and 6 show the experimental results for each communication range in
VC3 and Eindhoven3, respectively. The communication range “1/4” indicates
that that communicable range for an agent was 1/4 for the entire map. The
communication range “4/4” indicates that agents could communicate globally
with each other in the map. The results are averages and standard deviations,
which are the numbers in parentheses, of scores for 30 simulations for each
algorithm and communication range. Additionally, the results of “Max-Sum”
indicate the case in which agents sent and received messages 100 times in each
step for task assignment using the max-sum algorithm.

1 Task assignment with a greedy method on the distance between an agent and a task
2 Task assignment with a greedy method on the time required for an agent to complete
a task
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Table 5: Experimental results on VC3
Communication range

Agent 1{4 2{4 3{4 4{4

Closest 63.63 (˘0.87) 63.87 (˘0.82) 64.30 (˘1.01) 64.41 (˘0.97)
Greedy 56.55 (˘0.72) 53.15 (˘0.74) 52.19 (˘0.58) 52.35 (˘0.53)

Max-Sum 62.32 (˘1.36) 62.90 (˘1.20) 62.85 (˘1.39) 62.71 (˘1.25)

Table 6: Experimental results on Eindhoven3
Communication range

Agent 1{4 2{4 3{4 4{4

Closest 329.18 (˘1.89) 328.45 (˘1.75) 328.22 (˘1.73) 328.15 (˘1.69)
Greedy 328.62 (˘1.68) 326.43 (˘1.07) 325.73 (˘1.00) 325.50 (˘0.88)

Max-Sum 330.11 (˘1.17) 329.88 (˘2.27) 330.01 (˘1.79) 330.25 (˘1.60)

For VC3, the score of Closest was the highest, although Max-Sum was a high
score. For Eindhoven3, the results demonstrate that Max-Sum was the highest
score.

5.3 Considerations for Experiments

The experimental results show the following from the features of the algorithms.
Closest determines task assignments only from the distance between an agent

and the rescue task of a civilian; that, the scenarios in the experiment were only
suitable for the Closest, although the results demonstrated a high score.

Greedy determines the task assignment with priorities calculated based on
the time for solving the task. However, agents work sequentially according to
the priorities only. As a result, agents sometimes cannot work decentrally. This
method did not have the worst score if the scenarios included concurrent multiple
tasks.

By contrast, Max-Sum could decentrally assign appropriate tasks according
to the situation with utility functions for all tasks. Additionally, we confirmed
that Max-Sum worked effectively from the results, even if the communication
range was restricted. Therefore, we confirmed that the max-sum algorithm is an
effective approach for the solution of the task assignment problem of RRS.

The above discussion has demonstrated that the three methods worked prop-
erly on RRS. Furthermore, we showed that our proposed extension of RRS-ADF
is valid and effective for RRS.

6 Conclusions

In this paper, we proposed an extension of RRS-ADF to apply the DCOP al-
gorithm to the task assignment problem of RRS. We described the necessity of
multiple communications within each step for the DCOP as a reason for intro-
ducing the extension. As a result, we designed a pseudo-communication system



RoboCupRescue 2019 TDP Infrastructure AIT-Rescue (Japan) 13

to realize this communication and implemented DCOP Target Detector for that
system.

Finally, we confirmed that this extension is sufficient for applying the DCOP
algorithm to RRS through designing and implementing the max-sum algorithm
on RRS. We also confirmed that our max-sum algorithm implementation worked
effectively using some simulations. Additionally, because the max-sum algorithm
provided high scores, even in the simulation in which the situation recogni-
tion/communication range was restricted, we concluded that the algorithm is
effective for the task assignment problem of RRS.

However, this extension is difficult to use in agent competitions because it is
an extension to the RRS simulator. When we adopt this extension in our RRS,
we need to discuss the specification and configuration in detail according to our
purpose. We hope that our extension or idea is useful for the RRS community
through some discussions.
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