
RoboCupRescue 2021
TDP Agent Simulation AIT-Rescue (Japan)

Yuki Okado1, Toshinari Sakai1, Akira Hasegawa1, Hiroya Suzuki1, Haruki
Uehara1, Kazunori Iwata2, and Nobuhiro Ito1

1Department of Information Science, Aichi Institute of Technology, Japan
2Department of Business Administration, Aichi University, Japan

Abstract. Our team has developed agents with a task assignment strat-
egy using the Fast Max-Sum algorithm for distributed constraint opti-
mization problems. The agents obtain better results than the AIT-Rescue
2020 agent, which won first prize at JapanOpen 2020. However, major
changes in the rules for RoboCup 2021 have largely affected our agents.
We developed new agents with a strategy suited to the new rules. This
strategy allows our agents to decentralize searches and task execution.
The agents achieve better results than rcrs-adf-sample in nine scenarios.

1 Introduction

The task assignment problem is important in the RoboCupRescue Simulation
(RRS). The task assignment problem is the problem of deciding which task to
select for each agent to minimize the total cost of the agents’ work on this task
or to maximize the total utility of the agents’ work on the task. The task is
a problem to be solved by the agents. Such a problem can be expressed as a
distributed constraint optimization problem (DCOP) of a multi-agent system.
The task assignment problem in the RRS expressed as a DCOP can be solved
using a DCOP algorithm.

In RoboCup 2019, we modeled the task assignment problem in the RRS as a
DCOP. Additionally, we developed headquarter agents that assign tasks through
the Binary Max-Sum algorithm [7], which is a type of DCOP algorithm [3]. The
assigning of tasks by the headquarter agents through the Binary Max-Sum algo-
rithm scored more highly than rcrs-adf-sample agents, and the scores exceeded
the results of our team at RoboCup 2018. However, the Binary Max-Sum algo-
rithm is intended for static environments and is not designed to run in dynamic
environments where the circumstances of agents change over time, such as the
RRS. In addition, when applying the Binary Max-Sum algorithm or other DCOP
algorithms to the current RRS, there are multiple steps in calculating the assign-
ment. This is because most DCOP algorithms require multiple communications
between agents to calculate the assignment once. As the assignment of each
step is calculated on the basis of some prior disaster situation, if the situation
changes appreciably between steps, it is conceivable that the agents’ work will
be inappropriate.

2 Yuki Okado et al.

This year, we implemented the Fast Max-Sum algorithm [8] for Ambulance
Teams in the Agent Development Framework (ADF) extension environment [4]
for the DCOP. Our team adopted the old rules1. As a result, we realized the
assignment of tasks to agents via Fast Max-Sum as a distributed control cor-
responding to the dynamic environment and examined the effectiveness of the
assignment. Although we were aiming to use it in competitions, it is difficult
to implement Fast Max-Sum at present in RRS. In addition, the competition is
held according to new rules from this year. New rules use the No Fire scenario
and bed capacities of Refuges have been included. The Ambulance Teams’ Ac-
tion commands are changed to Load and Unload, and the Fire Brigades’ Action
command changed to Rescue.

Our team therefore developed a strategy for each platoon agent to deal with
the new rules. Ambulance Teams and Fire Brigades will engage in distributed
searching tasks and send and receive commands between each other to rescue
more civilians. Police Forces will effectively use the module developed in 2020
to clear blockades in a distributed manner so that Ambulance Teams and Fire
Brigades can conduct their rescue operations.

In Section 2, we describe the DCOP and Fast Max-Sum. We also describe
the Merged Clustering module, which has not been published in 2020. In Section
3, we explain the task assignment problem of Ambulance Teams based on the
definition of the DCOP, describe the behavior of Fast Max-Sum in the ADF
extended environment, and discuss the strategy adopted in competition by AIT-
Rescue 2021, the winning agent of JapanOpen 2020. In Section 4, we evaluate
the Fast Max-Sum agent and the AIT-Rescue 2020 agent in experiments. The
experiments show that the agent being assigned tasks via Fast Max-Sum out-
performs AIT-Rescue 2020. We also confirm that AIT-Rescue 2021 outperforms
the rcrs-adf-sample agent in many No Fire scenarios.

2 Modules

This section defines the DCOP and Fast Max-Sum and then describes Merged
Clustering, which is a module of AIT-Rescue 2021.

2.1 DCOP

The DCOP is the problem of determining a combination of variable values that
maximize utility when there is a constraint between a variable that corresponds
to a distributed agent and other variables. The DCOP is defined as follows [2].

– A “ ta1, . . . , alu
is a set of agents, where ai is an agent.

– X “ tx1, . . . , xmu

is a set of variables. However, m ŕ l, where m is the number of variables
and l is the number of agents.

1 Old rules use the Fire scenario. The Ambulance Teams’ Action commands are Res-
cue, Load and Unload, and the Fire Brigades’ Action Command is Extinguish.

RoboCupRescue 2021 TDP Agent Simulation AIT-Rescue (Japan) 3

– D “ tD1, . . . , Dmu

is a set of ranges for each variable xi P X, where Di is the range of variable
xi.

– F “ tf1, . . . , fku

is a set of functions (called utility functions) that express constraints between
variables. The utility function is expressed as fi :

Ś

xjPxi Dj Ñ R, where xi

is the set of variables whose constraint relation is denoted fi. The utility
function maps a combination of arbitrary values included in the value range
for each variable of xi to a real number. The value obtained by the utility
function is called the “utility.”

– α : X Ñ A
is a mapping function that expresses the relationship between an agent and
a variable. Each agent corresponds to a distinct variable.

Objective function FgpXq for optimization is defined by the utility functions
as

Fg pXq “
ÿ

fPF

f
`

Xk
˘

. (1)

σ is an arbitrary combination of values for each variable of X. Then, the
optimized assignment σ˚, which maximizes FgpXq, is expressed as

σ˚ “ argmax
σPD

Fg pσq . (2)

In this case, D is a direct product set of all ranges in D; i.e., a set of possi-
ble assignments. Equation (2) shows that σ˚ can be obtained only when the
combination σ maximizes the objective function.

2.2 Fast Max-Sum

Fast Max-Sum [8] is a Max-Sum algorithm [9] that assumes that each agent
cannot engage in multiple tasks at the same time, such as in the case of the RRS,
and that the number of tasks increases or decreases over time. Fast Max-Sum
can handle changes over time that other Max-Sum algorithms cannot handle,
and it can avoid the occurrence of redundant sending utilities that occur for
other Max-Sum algorithms.

The target problem of the Fast Max-Sum algorithm is a problem that can
be modeled as a factor graph. A factor graph is an undirected graph that com-
prises variable nodes that represent variables, factor nodes that represent utility
functions between variable nodes, and edges that represent mutual relationships
between variable nodes and factor nodes. An example of the factor graph is
shown in Fig. 1.

4 Yuki Okado et al.

!"

#$ #"

!$!%

!&#' Variable nodeFunction node

Fig. 1: Example of a factor graph

Each variable node has the utility for each range, and each factor node has
the utility for each assignment that can be obtained from the range of the neigh-
boring node. Each node then performs the following processing until the value
of the utility does not change or the specified number of iterations is reached.

1. The calculation of the utility value to be sent to the neighboring node from
the information currently held by each node

2. The update of the information of each node according to the utility value
received from the neighboring node

The value to be sent from the variable node is obtained as

µxiÑfj paq “ ´µfjÑxi
paq `

#

zxi
pdjq if a “ 1

maxfkPNxi
ztfju zxi

pdkq if a “ 0,
(3)

where

zxi
pdjq “ mfjÑxi

p1q `
ÿ

fkPNxi
ztfju

mfkÑxi
p0q .

Equation (3) is used when sending a utility from an arbitrary variable node
xi to a neighboring factor node fj . The equation calculates the utility µxiÑfj paq

when xi selects dj that is related to fj if a “ 1 or xi does not select dj if a “ 0.
Here, Nxi

represents function nodes adjoining the variable node xi.
The value to send from the function node is obtained as

µfiÑxj
paq “ max

σPtσ|σPΣfi
,σxj

“au

¨

˝fi pσq `
ÿ

xkPNfi
ztxju

mxkÑfi pσxk
q

˛

‚, (4)

where

Σfi “
ź

xrPNfi

t0, 1u .

Equation (4) is used when sending a utility from an arbitrary factor node fi to
a neighboring variable node xj . The equation calculates the utility µfiÑxj paq

RoboCupRescue 2021 TDP Agent Simulation AIT-Rescue (Japan) 5

when xj selects di that is related to fi, if a “ 1 or does not select dj if a “ 0.
Here, Nfi represents variable nodes neighboring the function node fi.

When sending utility to one node, the traditional Max-Sum algorithm calcu-
lates the utility for every combination of values taken by variables. Fast Max-Sum
focuses on specific tasks. This property reduces the number of sent utilities and
the number of utility combinations.

The value σ˚
xi

finally selected by the variable node xi is determined using
zxi

p¨q of Eq. (3) as

σ˚
xi

“ arg max
djPDi

zxi
pdjq . (5)

In addition, the traditional Max-Sum algorithm recreates factor nodes when
the number of tasks increases or decreases. In Fast Max-Sum, factor nodes can
be added or deleted. The assignment result and utility of the previous step are
retained. Furthermore, it is not necessary for the variable node xi to send utility
to the function node fj if it holds that

znxi
pfjq “ zn´1

xi
pfjq ^ max

fkPNxi
ztfju

znxi
pfkq “ max

fkPNxi
ztfju

zn´1
xi

pfkq , (6)

where the function zxi
p¨q is used by xi to calculate utility and the n th sending

is represented as znxi
p¨q.

2.3 Merged Clustering

In the past, our team could not make an efficient search after the search in the
assigned cluster was completed. The Merged Clustering module assigns a cluster
to each agent. In addition, this module expands the cluster assigned to an agent
by combining multiple clusters. Thereby, an agent that has completed all tasks
in its assigned cluster can search for new tasks in the new combined cluster.

The Merged Clustering module assigns clusters and expands the assigned
clusters through the following procedure.

1. A map is divided into the same number of clusters as the number of agents
using k-means++ [1],

2. Clusters are assigned to agents on a one-to-one basis using the Hungarian
method [6],

3. The assigned clusters are expanded by combining n other clusters with the
assigned clusters2.

Let k be the index for the result of the Merged Clustering module, calculated
as

k “ pThe number of agentsq ˆ pn ´ 1q ` i, (7)

2 Clusters are compared in terms of the center distance, and n clusters are joined,
starting with the closest one.

6 Yuki Okado et al.

where i is an index for the result of the k-means ++ calculation and n is the
number of clusters to be combined.

Note that if n “ 1, Eq. (7) is used to calculate the index of the one-to-one
assignment of clusters to agents.

3 Strategies

We first describe how to form a factor graph for the task assignment prob-
lems of Ambulance Teams with the old rules. We then explain how the DCOP
(e.g., variable nodes, factor nodes, and utility functions) is applied to the RRS
(e.g., agents, tasks, and RRS scores) when using Fast Max-Sum. In addition, we
describe modifications of Fast Max-Sum for implementation in the RRS environ-
ment. We finally discuss the strategy of each platoon agent used by AIT-Rescue
2021.

3.1 Factor Graph for the RRS

In terms of the definitions of agents, variables, and utility functions for the
DCOP, an agent must form or update a factor graph, which is the environment
in which Fast Max-Sum operates, in each step.

As mentioned in section 2.2, a factor graph is a graph comprising variable
nodes, factor nodes, and edges. A variable node represents a variable whereas
a factor node represents a utility function. An edge represents the dependency
between a variable and utility function and connects a variable node and factor
node. A utility function represented as a factor node on the factor graph affects
multiple variables. The utility function is defined for a single task, as described
in section 3.2. Therefore, each task is represented by a factor node.

However, a Civilian cannot manage its factor node, and the factor node is
managed by the Ambulance Teams instead. Each Ambulance Team grasps the
distance between each Ambulance Team and each task using the information
received through communication. Then, when the Ambulance Team determines
that it is the Ambulance Team closest to a certain task, it manages the factor
node that expresses that task.

Additionally, the extended environment of Miyamoto et al. [4] uses voice
communication. Scenarios limit this voice communication range. Owing to this
limitation, the messages required by the algorithm cannot be sent/received be-
tween all Ambulance Teams. Therefore, the problem cannot be represented using
a complete bipartite graph, and it is necessary to limit the range of variables
according to the communicable range. For these reasons, the edges of the graph
are only connected

– between a variable node that represents the task selected by the Ambulance
Team with any ID:n and factor nodes managed by the Ambulance Team
with ID:n

RoboCupRescue 2021 TDP Agent Simulation AIT-Rescue (Japan) 7

– between a variable node managed by the Ambulance Team with ID:n and
the factor nodes managed by other Ambulance Teams that can communicate
with ID:n

Each agent thus needs to identify other agents that can communicate with each
other at the beginning of each step.

Figure 2 is an example of the relationships between agents and tasks. The
Ambulance Team with ID:1 and ID:2 can communicate with each other. How-
ever, the Ambulance Team with ID:3 cannot communicate with either ID:1 or
ID:2. At this time, the factor graph looks like Fig. 3. x1 represents the task
selected by the Ambulance Team of ID:1, x2 represents the task selected by the
Ambulance Team of ID:2, and x3 represents the task selected by the Ambulance
Team of ID:3. The Ambulance Team with ID:2 that manages the variable node
x2 is closest to the location of the task, and the factor node f1 is managed by
the Ambulance Team with ID:2.

Ambulance Team

Civilian

Road

Communication
range

Communication is
impossible

Communication is
possible

𝐼𝐷: 3

𝐼𝐷: 2

𝐼𝐷: 1

Fig. 2: Example of agents and tasks

This node does not connect
because out of the
range of communication

𝑥3

𝑥1

𝑥2

𝑓1

Edge

Function node

Variable node

Agent managements
variable node

𝑥m

𝑓k

Fig. 3: Factor graph corresponding to Fig. 2

8 Yuki Okado et al.

3.2 Task Assignment Problem in the RRS

We model the Ambulance Teams according to the rules used until 2019 by as-
sociating the task assignment problem in the RRS as the DCOP, adopting the
definitions given in Section 2.1, as follows.

A “ ta1, . . . , alu represents the set of all Ambulance Teams in the simulation.
X “ tx1, . . . , xlu denotes the set of variables xi that represent the task selected

by the Ambulance Teams ai P A. A task that is eventually the value of
xi P X means a task that ai will take.

D “ tD1, . . . , Dlu denotes the set of task sets Di that Ambulance Team ai P A
can select. Di P D for an Ambulance Team comprises two elements:
– multiple Civilian rescue tasks that ai recognizes and
– a single situation search task that ai performs to recognize a simulation

situation.
We implement Fast Max-Sum only in the TargetDetector module. Therefore,
if Ambulance Team ai wants to detect a simulation situation, it does not use
TargetDetector but the Search module. In other words, Fast Max-Sum does
not select a search target in the TargetDetector module. Hence, there is a
single situation search task.

F “ tf1, . . . , fku denotes the set of utility functions fj that correspond to the
combination referring to variables, of the value xi of the variable xi P X.
We evaluate Civilian rescue tasks according to the cost of the tasks and the
penalty based on the lack of the necessary number of Ambulance Teams
assigned to the tasks. The cost indicates the number of steps required to
move to the task.

α : X Ñ A represents the function that determines the Ambulance Team ai P A
that manages the variable xi P X. Because no Ambulance Team can perform
more than one task simultaneously, only one variable can be managed by the
Ambulance Team ai P A. Therefore, this function is always bijective.

The final number of Civilian survivors is of paramount importance in an
Ambulance Team task. It is therefore necessary to allocate the number of agents
required to keep a Civilian alive and minimize the cost of rescue of that Civilian.
The objective function FgpXq for the Civilian rescue task that the Ambulance
Team is working on is given by equations (8), (9), (10), and (11). The
objective function in equation (8) is then minimized. The function in equation
(9) gives the time required for Ambulance Team a to start working on task d.
The function in equation (10) gives the penalty for there being an insufficient
number of agents when an Ambulance Team is assigned n to task d. The function
in equation (11) estimates the number of Ambulance Teams required to save
the Civilian of task d considering the current state of the Civilian.

Fg pXq “
ÿ

xPX

C pα pxq ,xq `
ÿ

dP
Ťl

i“1 Di

P pd, |tx|x “ d ^ x P Xu |q (8)

C pa, dq “

#
?

pXa´Xdq2`pYa´Ydq2

τ (If d is a Civilian rescue task)

0 (If d is a situation search task)
(9)

RoboCupRescue 2021 TDP Agent Simulation AIT-Rescue (Japan) 9

P pd, nq “

$

&

%

ρ

"

1 ´

´

minpREQpdq,nq

REQpdq

¯2
*

(If d is a Civilian rescue task)

0 (If d is a situation search task)
(10)

REQpdq “
BDd ˆ DTd

HPd
(11)

x : Current value of variable x

Xa : X coordinate of a

Ya : Y coordinate of a

BDd : Buriedness of d

DTd : HP that the Civilian in task d loses per step

HPd : Remaining HP of d

τ : Constant that represents an estimate of the distance that can be moved in each step

p0 ă τq

ρ : Constant that represents a penalty p0 ő ρq

When Fast Max-Sum is applied to the task assignment problem in the RRS
modeled as the DCOP as described above, the utility function fFMS used at
factor node fj representing a certain task dj is

fFMS “
ÿ

xPNfj

Cpαpxq, djq ` P pdj , |
␣

x|x “ dj ^ x P Nfj

(

|q, (12)

where Nfj represents a variable that depends on fj .

3.3 Unnecessary utility

Fast Max-Sum calculates assignments multiple times in 1 step. Then, when the
number of assignment calculations reaches a certain number, the final assignment
is the assignment of that step. Each node sends utilities for each assignment cal-
culation in 1 step. Then, Each node calculates the next utilities and assignment
based on the received utility. Our team sends utility by voice communication.
Sending utility from all nodes is synchronized because in the ADF extended
environment [4], voice communication is synchronized between agents.

Normally, in Fast Max-Sum, when sending utility, each node sends utility all
at once. However, in Fast Max-Sum implemented by our team, when utility is
sent an odd number of times, it is sent only from a factor node. In the case of
utility being sent an even number of times, it is sent only from a variable node.
This makes it possible to reduce the number of sending times without affecting
the assignment results. Figure 4 and Table 1 are example of utility sending
impremented by our team. Figure 4 shows the factor graph and the direction

10 Yuki Okado et al.

of the utility sent according to the number of assignments. Table 1 shows the
sending nodes according to the number of assignments in the graph of Figure 4.

Odd-number of sending

Even-number of sending

!"

!#

$" $#

Fig. 4: Direction of messages

Number of
calculate

Sender nodes

1 x1,x2

2 f1,f2
3 x1,x2

4 f1,f2
...

...

Table 1: Sender nodes when even or odd

Thus, the utility sends in a single assign calculation is only the utilities sent
by the variable node either the utility sent by the factor node.

We implement that the variable node determines the assignment when the
100th utility is calculated. At this time, the utility is calculated using the utility
sent from the factor node for the 99th time. This is the same before the 100th
time. When all nodes send utility at once, the even-numbered utility sent by the
factor node is not used to calculate the even-numbered utility at the variable
node. This is also the case when the factor node and odd numbers and even
numbers are reversed. Therefore, each node does not need to calculate/sending
all at once. That is to say, it is sufficient for the variable node and the factor
node to send utility with different timings.

We begin the utility calculate/sending from the factor node. The variable
node uses only the messages sent by the neighboring factor node when calculating
utility. Therefore, when the utility calculate/sending begins from the variable
node, it becomes difficult to consider the surroundings. Meanwhile, the factor
node uses the message and utility function from the neighboring variable node
when calculating utility. By calculating/sending utility from the factor node, the
assignment can be calculated with consideration of the surrounding environment.

3.4 Ambulance Teams

An Ambulance Team is responsible for transporting as many injured Civilians as
possible. Each Ambulance Team searches for collapsed buildings in the cluster
assigned to it. There will be no search uncollapse buildings because there are
no Civilians. The clusters are created using the Merged Clustering module. The
Hungarian algorithm [6] assigns Ambulance Teams to each cluster on a one-to-
one basis such that the distances between the initial positions of the Ambulance
Teams and clusters are minimized. Owing to a change in rules, Ambulance Teams

RoboCupRescue 2021 TDP Agent Simulation AIT-Rescue (Japan) 11

can no longer Rescue Civilians, and cooperation with the Fire Brigade, which
can Rescue Civilians, is thus important. To this end, the Fire Brigade is linked
to Ambulance Teams through radio communication.

Calling a Fire Brigade for rescue When an Ambulance Team finds a Civilian
buried in a collapsed building, the Ambulance Team sends information of the
target Civilian to the Fire Brigade via radio communication and requests them
to rescue the Civilian. At the same time, the Ambulance Team calculates the
time that it will take to complete the Rescue of the Civilian and plan to return
to the building at that time. In this way, rapid transport is made possible.

Search and transport A voice-based search [5] described in the 2020 TDP
is adopted to efficiently search for Civilians in buildings. Additionally, because
capacities have been newly set for Refuges, it is necessary to determine to which
Refuges Civilians should be transported. However, information on the number of
beds available at a Refuge can only be obtained by the agents near the Refuge or
the Ambulance Center and cannot be shared with remote agents through com-
munication. It is therefore difficult to obtain the latest information on Refuges,
and a Civilian is thus transported to the nearest Refuge.

3.5 Fire Brigade

The Fire Brigade aims to Rescue many disaster rescue agents so that they can
conduct their own tasks and as many Civilians as possible such that they survive
at the end of the simulation. This is because the survival rate of Civilians has
a greater effect than the HP of Civilians on the score. Owing to a change in
rules for 2021, the Fire Brigade can only Rescue. Therefore, if the target is a
Civilians, it is critical to cooperate with an Ambulance Team that can transport
the Civilian. When the rescue is complete, a transport request is sent to an
Ambulance Team via radio communication.

Rescue activities that prioritize the survival of disaster rescue agents
and Civilians As soon as the Fire Brigade spots a Civilian or disaster rescue
agent in need of rescue, it will rescue them if it can. Because the Fire Brigades
cannot identify the target through the exterior walls of buildings and Blockades
interfere with the Fire Brigades’ move. If the Fire Brigade finds multiple can-
didates, it determines the target to Rescue according to the priorities given in
Table 2.

The rescue target having the highest priority is a disaster rescue agent in the
cluster assigned to the Fire Brigade. The aim of this prioritization is to increase
the number of active disaster rescue agents in the initial stage of the disaster
and thus increase the rescue efficiency. When a buried Civilian is found, the Fire
Brigade determines whether it can rescue the Civilian according to the steps
calculated by

ptime to reach ` buriednessq ˚ damage. (13)

12 Yuki Okado et al.

Table 2: Priority of the rescue target for our Fire Brigades

Priority Rescue target

Highest Agent in the cluster

High Civilian in the cluster

Medium Agent outside the cluster

Low Civilian outside the cluster

If there are no more targets to rescue, the Fire Brigade will search for more
targets in the same way as an Ambulance Team does.

Calling the Ambulance Teams for transport A Fire Brigade cannot trans-
port Civilians and therefore sends information of the target Civilians to an Am-
bulance Team, with a request to transport the Civilians, after the buried Civil-
ians are rescued. The Ambulance Team that receives this message transports
the targeted Civilians.

3.6 Police Force

The Police Force clears as many blockades as possible so that other agents can
reach their destinations smoothly. Our Police Force thus prioritizes the high-
ways [5] identified by the Passable Path Planning module [5], essential buildings
such as Refuges, and the destinations of other agents as communicated. The
Police Force then uses the prioritization of entities to select the blockades to be
cleared in the most effective manner.

Each Police Force selects a road/building in its assigned cluster from among
the prioritized entities. The Police Forces thus work on single tasks with no
overlap among the Police Forces. When the initial positions of the Police Forces
are concentrated at the same location, they likely work on the same road if it
is included on the path to each task. We handle this problem by dispersing the
Police Force using the Passable Path Planning module.

Dividing tasks with clustering modules Each of our Police Forces selects a
road/building within its assigned cluster and clears some blockades while moving
there. Then, if there are any immovable agents/Civilians in its perceivable range,
the Police Force clears the associated blockades.

Table 3 lists the priority of each condition encountered when the Police Forces
select a task. If more than one task has the highest priority, the closest task is
selected. Additionally, the assigned cluster is expanded using the Merged Clus-
tering module when there is no selectable task in the currently assigned cluster.

RoboCupRescue 2021 TDP Agent Simulation AIT-Rescue (Japan) 13

Table 3: Priority of conditions considered by our Police Forces

Priority Condition

Highest If there is any of the following:

– A building (in the cluster) initially containing an agent
– A Refuge (in the cluster)
– An agent/Civilian prevented from moving by any blockade in

the perceivable range
– A destination road/building (in the cluster) communicated

by another agent

High Highways (in the cluster)

Medium Buildings (in the cluster)

Low Roads (in the cluster)

Using the Passable Path Planning module in the early stages of the
disaster When initially outside the cluster, each of our Police Forces moves
toward its assigned cluster and clears blockades that are obstructing movement.
There will be redundancy if multiple Police Forces work on the same road as a
result of being initially located in similar positions and having similar paths to
their assigned clusters. Furthermore, each activity in the assigned cluster will be
delayed while a Police Force clears blockades.

Hence, each Police Force moves to its assigned cluster according to a path
generated by the Passable Path Planning module. The module derives a path
that may not be the shortest in terms of the physical length but is the shortest
in terms of the number of steps. Additionally, no Police Force considers any
highway, for which there may be overlap with other Police Forces, outside of its
cluster. The reduced redundancy comes from each Police Force moving along a
different path. Moreover, each Police Force can start work in its assigned cluster
quickly because it avoids blockades outside of this cluster.

4 Preliminary Results

In this section, we conduct experiments to examine the effectiveness of our im-
plementation of Fast Max-Sum on TargetDetector (henceforth, Fast Max-Sum
agent) and AIT-Rescue 2021 with the strategy introduced in this TDP. The
conditions and results of each experiment are presented below.

4.1 Results of Fast Max-Sum

Experiments with Fast Max-Sum agents are performed in the ADF extension
environment for the DCOP developed by Miyamoto et al. [4]. Therefore, each

14 Yuki Okado et al.

agent can communicate multiple times in one step. The scenario is that used in
the RoboCup 2019 Final. This is the latest scenario of the old rules, which were
used in international competition. However, the following changes are made to
the scenario for Fast Max-Sum execution.

– There are no blockades or fires.
– There are no platoon agents or headquarter agents other than the Ambulance

Teams.
– The score is the number of surviving Civilians.
– The number of Ambulance Teams is limited to 10.3

We compare our results with those of AIT-Rescue 2020, the winning team
of JapanOpen 2020. However, because the execution environment of the AIT-
Rescue 2020 agent is an unextended ADF environment, multiple communications
in a single step are not possible. Values are thus presented for reference only.
The only difference between the two agents is the TargetDetector module, with
the other modules remaining the same.

These agents have not included randomness. Therefore, we will compare the
results of one experiment under each scenario.

The results of the experiments are presented in Table 4.

Table 4: Fast Max-Sum experimental results

Team

Scenario Fast Max-Sum AIT-Rescue 2020

berlin2 187 184
eindhoven2 226 225

paris2 193 187
sf2 242 240

SydneyS2 253 247
vc2 151 149

The experimental results show that the number of surviving Civilians for the
Fast Max-Sum agent is higher than that for the AIT-Rescue 2020 agent in six out
of six scenarios. This indicates that the decentralized control of task decisions
by Fast Max-Sum is an effective method for disaster rescue agents.

In future work, it will be necessary to implement Fast Max-Sum agents that
support the new rules, implement other DCOP algorithms, and increase the
number of agents that can run Fast Max-Sum.

4.2 Results of Agent AIT-Rescue 2021

To investigate the effectiveness of the AIT-Rescue 2021 agent, we conduct a
comparative experiment with other agents. We compared the number of Civilians

3 This is the same number as adopted in the experiment conducted by Ramchurn et
al. [8]

RoboCupRescue 2021 TDP Agent Simulation AIT-Rescue (Japan) 15

in Refuge. The rcrs-adf-sample is used in the comparison because it is impossible
to obtain agents from other teams that support the new rules. Excluding the
test scenario, we consider 11 rcrs-server No Fire scenarios.

The experimental results are given in Tables 5.

Table 5: AIT-Rescue 2021 and rcrs-adf-sample Experimental results

Team

Scenario AIT-Rescue 2021 rcrs-adf-sample

berlin 57 23
eindhoven 116 33

istanbul 119 65
joao 35 8
kobe 157 173

montreal 22 67
ny 135 102

paris 83 83
sakae 43 4

sf 35 5
vc 196 109

We see from the experimental results that the number of Civilians in Refuge
of our agent are higher than or equal to those of rcrs-adf-sample in 9 out of 11
scenarios. This suggests that the modules and strategies that we have described
here work effectively in disaster relief.

However, in two scenarios, the number of Civilians in Refuge is lower than
that of rcrs-adf-sample. This is because the rescue priority of platoon agents is
higher than that of civilians, which may increase the number of deaths.

It is therefore thought that the number of Civilians in Refuge can be improved
by making it possible to judge whether the rescue of platoon agents or that
of Civilians should be prioritized with the passage of time and the change in
situation.

5 Conclusions

Our team has implemented TargetDetector with Fast Max-Sum for the proper
task assignment of Ambulance Teams. We were thus able to achieve better results
than AIT-Rescue 2020, the winning team of JapanOpen 2020, in all six scenarios
that we tested. This result suggests that it is effective to use Fast Max-Sum to
determine the task of an Ambulance Team. However, this agent cannot be used
in competition because it requires an ADF extension to run and does not support
the new rules.

We therefore implemented AIT-Rescue 2021, an agent suited to the new rules,
to rescue more agents and civilians. AIT-Rescue 2021 has the following features.

– The number of rescue targets is increased as needed by expanding the area
of responsibility through the Merged Clustering module.

16 Yuki Okado et al.

– Cooperation between different types of agent is facilitated through commu-
nication.

– The number of agents out of action is reduced by dispersing agents and
prioritizing the Clear of roads deemed critical.

As a result, AIT-Rescue 2021 outperformed the rcrs-adf-sample agent in 9 of
the 11 scenarios that are standard in rcrs-server.

However, the rcrs-adf-sample outperformed AIT-Rescue 2021 agent in 2 sce-
narios. This was because the rescue of platoon agents was prioritized over that of
the civilians in the case of AIT-Rescue 2021. We therefore need to make changes
to determine the priority target flexibly.

Additionally, AIT-Rescue 2021 does not consider the bed capacities of refuges
in determining the destination. It is therefore difficult to obtain results for scenar-
ios where bed capacities are low. We need to implement a method of determining
the refuge destination with consideration of the bed capacity of the refuge.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
SODA ’07 (2007)

2. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization prob-
lems and applications: A survey. CoRR abs/1602.06347 (2016), http://dblp.
uni-trier.de/db/journals/corr/corr1602.html#FiorettoP016

3. Kusaka, T., Miyamoto, Y., Hasegawa, A., Iwata, K., Ito, N.: RoboCupRescue 2019
TDP Agent Simulation AIT-Rescue (Japan) (2019)

4. Miyamoto, Y., Kusaka, T., Okado, Y., Iwata, K., Ito, N.: RoboCupRescue 2019
TDP Infrastructure AIT-Rescue (Japan) (2019)

5. Miyamoto, Y., Kusaka, T., Okado, Y., Sakai, T., Hasegawa, A., Uehara, H., Ito,
N., Iwata, K.: RoboCup Japanopen 2020 ONLINE Rescue Simulation AIT-Rescue
(Japan) (2020)

6. Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

7. Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., Rodŕıguez-Aguilar,
J.A.: Binary max-sum for multi-team task allocation in RoboCup Rescue. In: Opti-
misation in Multi-Agent Systems and Distributed Constraint Reasoning (OptMAS-
DCR) (2014)

8. Ramchurn, S., Farinelli, A., Macarthur, K., Jennings, N.: Decentralized
coordination in robocup rescue. Comput. J. 53, 1447–1461 (10 2010).
https://doi.org/10.1093/comjnl/bxq022

9. Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product belief-
propagation algorithm in arbitrary graphs. IEEE Trans. Information Theory 47,
736–744 (2001)

http://dblp.uni-trier.de/db/journals/corr/corr1602.html#FiorettoP016
http://dblp.uni-trier.de/db/journals/corr/corr1602.html#FiorettoP016
https://doi.org/10.1093/comjnl/bxq022

	RoboCupRescue 2021 TDP Agent Simulation AIT-Rescue (Japan)

