
RoboCupRescue 2023
TDP Agent Simulation AIT-Rescue (Japan)

Haruki Uehara1, Hiroya Suzuki1, Joe Fujisawa1, Ryoya Maeda1, Itsuki
Matsunaga1, Kaito Ito1, Ai Okamoto1, Keitaro Sasada1, Yuki Shimada1, Yuya

Sugisaka1, Ryosuke Suzuki1, Keita Hayashi1, Keisuke Ando1, Takeshi
Uchitane1, Kazunori Iwata2, and Nobuhiro Ito1

1Department of Information Science, Aichi Institute of Technology, Japan
2Department of Business Administration, Aichi University, Japan

Abstract. We introduced a layered distributed constraint optimization
problem (L-DCOP) to the RRS task assignment problem. The experi-
mental results confirmed that the new model was more efficient in rescue
operations than that modeled on the distributed constraint optimization
problem. However, we could not introduce these ideas because of com-
munication limitations. Therefore, we used the agent’s travel distance
estimation used in the L-DCOP experiment and improved the search or-
der determination method. This improved the agent’s search efficiency
and the accuracy of travel distance estimation, and enabled more effi-
cient rescue operations. As a result, we achieved better results than our
agents from last year.

1 Introduction

RRS tasks have time window constraints that must be completed within a certain
amount of time. RRS tasks have ordering constraints that must be executed
in order between tasks of different types. In recent years, our team has been
developing a method to assign tasks in RRS task assignment as a distributed
constraint optimization problem (DCOP). However, the DCOP cannot consider
the time window and ordering constraints of tasks. Therefore, this year, we
applied a layered DCOP (L-DCOP), which can take into account both the time
window and ordering constraints of tasks, to the RRS task assignment problem.
As a result, we confirmed that the rescue activities modeled by the L-DCOP
were more efficient than those modeled by the DCOP.

Because of communication limitations in RRS, we could not apply the afore-
mentioned research. Therefore, we used the agent’s travel distance estimation
used in the L-DCOP experiment. We also improved the agent’s search order
method, which we had not focused on previously. Using this implementation, we
succeeded in surpassing our agent’s score from last year in 4 out of 10 disaster
scenarios.

In Section 2, we explain the DCOP, L-DCOP, modeling of the RRS task as-
signment problem by the L-DCOP, and experiments in which we compared the

2 Haruki Uehara et al.

rescue results of the RRS task assignment problem modeled using the L-DCOP
with those modeled using the DCOP. In Section 3, we explain the modules
used in AIT-Rescue 2023. In Section 4, we explain the strategy for each agent
implemented in AIT-Rescue 2023. In Section 5, we report on the experiment
conducted to evaluate the effectiveness of the implemented strategies. In Sec-
tion 6, we summarize this TDP and describe issues that we will address before
RoboCup2023.

2 Scientific challenge

In this section, we discuss the definitions of the DCOP and L-DCOP, and the
modeling of the RRS task assignment problem using the L-DCOP. Then, we
describe the experiment in which we compared the rescue results of the RRS
task assignment problem modeled using the L-DCOP with those modeled using
the DCOP.

An important problem in RRS is the task assignment problem. In the task
assignment problem, an agent is assigned appropriately to a task according to
the given conditions. A task is a problem to be solved by an agent. Such a
problem can be represented as a DCOP in a multi-agent system. An attempt
to solve the problem expressed as a DCOP can then be made using the DCOP
algorithm.

2.1 Distributed constraint optimization problem

The DCOP is the problem of finding the optimal combination of variables that
satisfies the constraints between agents and variables as a solution. In this study,
the variables that constitute the problem are distributed and managed by mul-
tiple agents. The DCOP [1] is defined as follows:

– A “ ta1, . . . , amu

is a finite set of agents, where m is the number of agents.
– X “ tx1, . . . , xnu

is a finite set of variables, where n is the number of variables. Each variable
is managed by one of the agents. m ď n and the number of variables must
always be greater than or equal to the number of agents.

– D “ tD1, . . . , Dnu

is a family of sets that collects the range of variable x P X, where 1 ď i ď n
and Di denotes the range of the corresponding variable xi. Each element
of the range is called a candidate value for the variable and is represented
by d. The combination of any candidate values is represented by σ and the
combination of all candidate values is represented by Σ. Σ is defined as

Σ “

n
ź

i“1

Di (1)

where
ś

is a large operator that performs a direct product.

RoboCupRescue 2023 TDP Agent Simulation AIT-Rescue (Japan) 3

– F “ tf1, . . . , flu
is a finite set of functions (called cost function) that represent constraints
between variables. The cost function is defined as

fj :
ź

xkPXj

Dk Ñ R (2)

where Xj is the set of variables whose constraint relation is expressed as fj .
– α : X Ñ A

In the DCOP, the combination of candidate values is determined that satis-
fies the constraints and has the lowest total cost. Therefore, a correspondence
always exists between any variable and any agent.

The objective function Fgpσq for optimization is the sum of the output values
of the cost function. The objective function Fgpσq is defined as

Fgpσq “

k
ÿ

i“1

fipσfiq (3)

where σfi is a combination of only the candidate values corresponding to the
cost function fi from σ.

The optimal combination σ˚ that minimizes the cost can be defined as

σ˚ “ argmin
σPΣ

Fgpσq (4)

2.2 Layered DCOP

An extended DCOP called the L-DCOP is proposed to solve the task assignment
problem with ordering and time window constraints. Under the ordering con-
straint, a task must be completed before the target task can be executed. Under
the time window constraint, a target task must be completed within a certain
time. In L-DCOP, tasks are stratified by priority. Additionally, the DCOP is
solved for each layer, and the overall problem is solved based on the combi-
nation of the layers and the constraint conditions. The processing steps in the
L-DCOP are as follows:

1. Tasks are assigned to each layer according to their priority, thereby creating
a precedence graph.

2. A factor graph is created for each layer and the DCOP algorithm is executed
for each layer.

3. Task assignment is performed according to the factor graph. After the agent
has been assigned a task, a simple temporal network (STN) is created.

4. The most efficient execution order is determined by STN.

The precedence graph created in Step 1 is shown in Fig. 1. A precedence
graph is a directed acyclic graph with nodes T “ tT1, . . . , Tnu corresponding to
tasks and edges Ep that represent the ordering constraints among tasks.

4 Haruki Uehara et al.

T1

D = 4
EST = 1
LFT = 10

T3

D = 2
EST = 1
LFT = 10

T2

D = 12
EST = 0
LFT = 8

T6

D = 8
EST = 3
LFT = 15

T5

D = 4
EST = 4
LFT = 12

T4

D = 2
EST = 3
LFT = 13

T8

D = 5
EST = 2
LFT = 18

T7

D = 2
EST = 7
LFT = 17

Layer 1 Layer 2 Layer 3

Fig. 1: Example of a precedence graph

Directed edge eij P Ep indicates that task Ti should be completed before
task Tj can be executed. For example, Fig. 1 shows that task T1 must be com-
pleted before tasks T4 and T5 can be executed. Additionally, each task maintains
information about the earliest start time (EST), latest finish time (LFT), and
duration (D). Fig. 1 shows that task T1 has time D of 4, time EST of 1, and
time LFT of 10.

In the precedence graph, tasks are assigned in such a manner that there are
no ordering constraints among tasks in the same layer. Therefore, tasks in the
same layer can be executed independently.

An example of the factor graph created in Step 2 is shown in Fig. 2. In this
TDP, n “ m.

The variable node X “ tx1, . . . , xmu represents the set of agents and the
function node F “ tf1, . . . , fnu represents the set of tasks. Task Ti and function
node fi have a one-to-one correspondence. An edge connecting a variable node
and function node indicates that the agent can start the task. In Fig. 2, agent
x1 indicates that tasks f1 and f3 can be started. A factor graph is created for
each layer, as shown in Fig. 2. The DCOP algorithm is then executed for each
layer.

The STN created in Step 3 is the graph used by the agent to manage the
schedule of its tasks. An example of an STN is shown in Fig. 3.

In Fig. 3, a node represents the start time of a task (ST) or the end time of a
task (FT). STi and FTi represent the start and end times of task Ti, respectively.
The edge connecting the start time of the task (ST) to the end time of the task
(FT) represents the time taken for task Ti (DTi). The edge connecting the end

RoboCupRescue 2023 TDP Agent Simulation AIT-Rescue (Japan) 5

Layer Layer Layer

Fig. 2: Example of a factor graph in the L-DCOP

Layer 1 Layer 3Layer 2

Fig. 3: Example of a STN

time of the task (FT) to the start time of the task (ST) represents the travel time
between tasks (TT). In Fig. 3, the time taken for a task in task T1 (DT1) is 2, and
the travel time from task T1 to task T5 (TT) is 3. Each node has a defined interval
that represents the time window constraint of the task. If the number of agents
executing task Ti is m, the interval of the start time is

“

ESTTi , LFTTi ´ DTi

m

‰

and the interval of the end time is
“

ESTTi
` DTi

m , LFTTi

‰

. In Fig. 3, the interval
of the start time of task T1 is r1, 8s and the interval of the end time of task T1

is r3, 10s.
After an STN is created for each agent, the task execution order is determined

to minimize the sum of the travel time between tasks and task execution time.
Each agent orders its tasks based on its STN.

2.3 Modeling the RRS task assignment problem with the L-DCOP

The L-DCOP is a DCOP framework that has been extended to enable the han-
dling of task assignment problems in which ordering and time window constraints

6 Haruki Uehara et al.

exist. Therefore, to model the task assignment problem in RRS as the L-DCOP,
needs to be extended by adding the following definitions to the task assignment
problem modeled as the DCOP:

– time window and ordering constraints
– precedence graph
– STN.

Time window and ordering constraints of the task in RRS In RRS, Fire
Brigades are responsible for the rescue task. In the rescue task, civilians are res-
cued from a collapsed building. Additionally, Ambulance Teams are responsible
for the load task. In the load task, civilians are transported to a refuge. The
targets of the rescue and load task are civilians. Injured civilians continue to
suffer damage until they are transported to a refuge. Therefore, civilians must
be rescued and transported to a refuge quickly. Additionally, a buried civilian
in a building cannot be transported until the rescue is complete. Therefore, the
time window and ordering constraints in the RRS task can be defined as follows:

Time window constraint: The rescue and load tasks must be completed
while the target civilian is alive.

Ordering constraint: The load task cannot be executed until the rescue
task is complete.

Definition of precedence graphs in the rescue and load tasks The prece-
dence graphs for the rescue and load tasks are shown in Fig. 4.

𝑇𝑙!

𝑇𝑙"

𝑇𝑙#

𝑇𝑟!

𝑇𝑟"

𝑇𝑟#

Fire Brigade Ambulance Team

Layer1 Layer2

：Rescue Task

：Load Task𝑇𝑙!

𝑇𝑟!

Fig. 4: Precedence graphs for the rescue and load tasks

The precedence graph assigns the rescue task to Layer 1 and the load task
to Layer 2. The rescue task and load task target the same civilians.

RoboCupRescue 2023 TDP Agent Simulation AIT-Rescue (Japan) 7

The precedence graph consists of two types of tasks. The rescue task handled
by the Fire Brigade is defined as Tr “ tTr1, ..., T ri, ..., T rmu. The load task
handled by the Ambulance Team is defined as Tl “ tT l1, ..., T li, ...T lmu.

Additionally, information about rescue task Tri and load task T li can be
defined as follows:

Rescue task Tri

– DTri（time required for rescue task Tri）
This is the time needed to rescue civilians. When one agent performs a
rescue operation in RRS, the degree of burying is reduced by a certain
amount in one step. Therefore, the time required to complete the rescue
depends on the degree of burying.

– ESTTri（time when rescue task Tri can be started）
This is the time when Ambulance Teams can begin to rescue civilians. In
this TDP, EST is set to 1 in the rescue task. This is because no disaster
occurs after the simulation starts. Therefore, all tasks can be started at
the first step.

– LFTTri（time when the rescue task Tri must be complete）
This is the time at which civilians are estimated to be in a dead state.

Load task T li

– DTli（time required for load task T li）
This is the time required to transport civilians. Civilians are assumed to
be transported to the nearest refuge.

– ESTTli（time when load task T li can be started）
This is the time when Fire Brigades can begin to transport civilians. It is
necessary to have completed the rescue task before the load task begins.
Therefore, the load task can start when the rescue task is complete. This
time depends on the schedule to which the rescue task is assigned.

– LFTTli（time when load task T li must be complete）
This is the time at which civilians are estimated to be in a dead state.

Definition of the STN in rescue and load tasks The STN determines the
task that satisfies the time window constraint from the permutation of all tasks
assigned to the agent. Then the STN determines the execution order with the
shortest execution time. Therefore, when there are n tasks, we must calculate
whether the time window constraint is satisfied for n! combinations; that is, the
number of combinations increases exponentially as the number of tasks increases.

We propose a method to create a schedule by inserting assigned tasks into
the STN. The process of adding rescue task Tr3 to the STN of agent ak is shown
in Fig. 5.

In Fig. 5, the execution order of Tr1 followed by Tr2 has already been deter-
mined. Inserting rescue task Tr3 at the insertable position of this STN creates
three different schedules. The agent extracts the schedule that satisfies the time

8 Haruki Uehara et al.

𝑇𝑟! 𝑇𝑟"

𝑇𝑟!： Inserted Tasks𝑇𝑟!： Candidate Task： Insertable position

𝑇𝑟#

Agent :	𝑎"

Insert

Fig. 5: Add rescue task Tr3 to the STN of agent ak

window constraints from the created schedule. Then the agent keeps the sched-
ule with the shortest task execution time in the extracted schedules. Whenever a
task in a layer is assigned, this operation is executed. At this time, the assigned
task is a candidate task for insertion.

The method creates all schedules that satisfy the time window constraints
of the inserted and candidate insertion tasks each time a task is assigned. If
no schedule satisfies the time window constraint, then the candidate task is
not inserted. It then compares all the generated schedules and retains only the
schedule with the shortest task execution time.

The STN needs to ensure that each task satisfies its time window constraints.
Additionally, the time window constraint must take into consideration not only
the execution time of the task but also the travel time of the agent. Therefore,
the travel time can be defined as follows:

– TTri
This represents the travel time from the location of the Fire Brigade to
the location of civilians targeted by rescue task Tri. The location of the
Fire Brigade is the location of civilians targeted by the rescue task to be
performed before Tri. If no task is to be executed before Tri, then it uses
the initial position of the Fire Brigade.

– TT li
This represents the travel time from the location of the Ambulance Team to
the location of the civilians targeted by transport task T li. The location of
the Ambulance Team is the location of the shelter that has completed the
transport task to be performed before T li. If no task is to be executed before
T li, it uses the initial position of the Ambulance Team.

Each agent has an STN. The following is a description of the elements required
for the calculations to be performed each time a task is assigned. The Fire
Brigade checks whether the time window constraints are satisfied based on the
following factors. Let Tri be the target task. Additionally, let T li be a transport
task that targets the same citizens as Tri. In this case, consider the following A,
B, and C:

A: time taken to complete Tri (TTri ` DTri)

RoboCupRescue 2023 TDP Agent Simulation AIT-Rescue (Japan) 9

B: time taken to complete T li (TT li ` DTli)
C: total time for A of tasks before Tri.

If A ` B ` C does not exceed LFTTri , the Fire Brigade can be judged to have
satisfied the time window constraint.

In the same manner, the Ambulance Team checks whether the time window
constraints are satisfied based on the following factors. Let T li be the target task
to be checked to determine whether the time window constraint is satisfied. In
this case, consider the following a and b:

a: time taken to complete T li.(TT li ` DTli)
b: ESTTli .

If a ` b does not exceed LFTTli , then the Ambulance Team can be judged
to have satisfied the time window constraint.

The STN keeps the schedule with the shortest task execution time. The
elements required in this calculation are as follows:

Fire Brigade: total time of TTri `DTri in the target execution sequence
Ambulance Team: total time of TT li ` DTli in the target execution se-

quence.

2.4 Implementation of the binary max-sum for the task assignment
problem in RRS

We apply the binary max-sum (BMS) to the task assignment problem in RRS.
The BMS is an algorithm for solving the DCOP. The L-DCOP executes the
DCOP algorithm for each layer in the precedence graph. An example of a factor
graph to be created is shown in Fig. 6.

First, task assignment and scheduling are repeated in Layer 1 until all tasks
are assigned to agents. The schedule for each Fire Brigade obtained in Layer 1
is shared with Layer 2. The EST of the load task in Layer 2 is updated based
on the received schedule. Then, task assignment and scheduling are performed
in the same manner as in Layer 1. Finally, the simulation is run based on the
Layer 1 and Layer 2 schedules.

Processing steps for iterative task assignment The iterative task assign-
ment procedure for the BMS running on Layer 1 is as follows:

1. Execute task assignment using the BMS.
2. Adds the assigned task to the agent’s own STN and maintains the shortest

schedule that satisfies the time window constraints of the task.
3. The agent shares the tasks inserted in the STN using communication, and

eliminates the tasks it has selected and received from the tasks in Layer 1.
4. If a task exists in Layer 1 and any agent can select a task in Layer 1, repeat

steps 1–3.

10 Haruki Uehara et al.

		𝑎!

		𝑎"

		𝑎#

Layer1
		𝑎$ ：Fire Brigade

		𝑏% ：Ambulance Team

		𝑇𝑟!

		𝑇𝑟"

Send schedule

		𝑏!

		𝑏"

		𝑏#

Layer2

		𝑇𝑙!

		𝑇𝑙"

Send schedule

		𝑇𝑟&

		𝑇𝑙&

：Rescue Task

：Load Task

Simulation

Iterative Task
Assignment

Iterative Task
Assignment

Fig. 6: Example of task assignment in the L-DCOP

In step 2, each agent keeps the shortest schedule that satisfies the time win-
dow constraints of the task. Therefore, the agent operates based on that schedule.
Layers and tasks are kept by each agent. Therefore, it is necessary to synchro-
nize the layer information each time a task is assigned. In Step 3, the layer
information is synchronized by sharing the tasks inserted in the STN with other
agents.

2.5 Experiment

In this experiment, we compared the rescue results of the following two types of
agents:

– agents that model the RRS task assignment problem as a DCOP (DCOP
Agent)

– agents that model the RRS task assignment problem as an L-DCOP (L-
DCOP Agent).

In this experiment, we used the ADF extension environment for the DCOP [4];
that is, each agent could communicate multiple times during one step.

In this experiment, it was difficult to determine the travel time from the lo-
cation of the Ambulance Team to the location of the civilian to be transported
when the Fire Brigade was assigning tasks. Therefore, we computed the Ambu-
lance Team’s behavior virtually. In this experiment, the Ambulance Team did
not perform the transport operation. The civilian was considered to have been
transported to a refuge after the rescue by the Fire Brigade. If a civilian could be
transported alive to the nearest refuge, the civilian was considered to be trans-
ported. We based the determination of whether a civilian could be transported

RoboCupRescue 2023 TDP Agent Simulation AIT-Rescue (Japan) 11

alive on the estimated travel time from the civilian’s location to the nearest
refuge and the civilian’s estimated survival time.

We simulated a total of 12 disaster scenarios by combining four scenarios and
three maps. In the simulation, we measured the number of civilians rescued and
transported, and the behavior of the agents. The number of civilians rescued and
transported in each disaster scenario is shown in Table 1. In Table 1, rescued
represents the number of civilians rescued and transported represents the number
of civilians transported to the refuge.

Table 1: Comparison of the Number of Civilians Rescued and Transported
map disaster scenario(placement) L-DCOP Agent DCOP Agent

Agent Task rescued transported rescued transported

Eindhoven

centralized centralized 34 34 39 39
centralized distributed 26 24 30 30
distributed centralized 41 41 41 41
distributed distributed 41 37 31 31

SF

centralized centralized 40 38 35 35
centralized distributed 36 34 33 33
distributed centralized 43 43 36 36
distributed distributed 44 43 36 36

VC

centralized centralized 38 38 36 36
centralized distributed 40 38 42 42
distributed centralized 46 44 44 44
distributed distributed 45 43 42 42

Total 474 457 445 445

As shown in Table 1, the L-DCOP Agent transported and rescued more
civilians than the DCOP Agent in 9 out of 12 disaster scenarios. The results
also indicated that the L-DCOP Agent had a higher total number of rescued
and transported civilians than the DCOP Agent. Therefore, the L-DCOP Agent
proposed in this TDP performed efficient rescue activities. However, the pro-
posed algorithm cannot yet be used in competition because it uses the ADF
extension environment for the DCOP. Thus, we used the method used in the
L-DCOP Agent experiment to estimate the distance traveled by the agent. We
also improved the method for determining the order in which agents searched.
These are discussed below.

3 Modules

3.1 Overview of this section

In this section, the TwoOpt and the BoundaryCenterPathLengthEstimator mod-
ules are described, which were newly developed and added this year. The TwoOpt
module determines the order in which agents search for buildings. The Bound-
aryCenterPathLengthEstimator module calculates the distance between build-
ings. The other modules remain the same as those in AIT-Rescue 2022 [2].

12 Haruki Uehara et al.

3.2 TwoOpt module

Agents need to search each building to obtain information about civilians. To
date, each agent has searched the buildings assigned to it using clustering and
selected the nearest unsearched building at each step. If the distance required for
the search is minimized, the search time can be reduced. Therefore, it is necessary
to calculate the shortest search order for the group of buildings assigned to the
agent during precomputation.

Therefore, we developed the TwoOpt module, which calculates the optimal
search order for short routes. The TwoOpt module uses the 2-opt algorithm,
which is an approximate solver for the traveling salesman problem, to determine
the search order of buildings.

The 2-opt algorithm can be used to calculate the search order of buildings for
the following reason. Consider a graph with buildings as vertices. Edges connect
reachable buildings. Assume that roads do not become impassable because of
blockades in this scenario, which results in a complete graph. The problem of
finding the shortest building search order is equivalent to finding the shortest
Hamiltonian path in this graph. The shortest Hamiltonian problem can be con-
verted to a traveling salesman problem [3]. Hence, the 2-opt algorithm can be
used to determine the search order of buildings.

The TwoOpt module executes the following process:

1. Generate a list of the initial search order from the input set of buildings.
2. Randomly select two buildings from the search order list.
3. Compare the distances of the search paths in the original search order with

the search order in which the two buildings are replaced. If the distance is
shorter, reverse the order of the two buildings and the building in between
them on the list.

4. Repeats Steps 2 and 3 for an arbitrary number of times.
5. Output the list of buildings.

This module is used in the precomputation of the agent’s search module to
create a search order from the buildings assigned to the agent. This search order
is then used in the Fire Brigade’s search module.

3.3 BoundaryCenterPathLengthEstimator module

To estimate the time it takes for an agent to move, accurate travel speed and dis-
tance are required. To date, the Euclidean distance between the starting point
and target point has been used as the travel distance of the agent. However,
agents move along roads, and there may be a significant error between the Eu-
clidean distance and actual travel distance. Therefore, it is necessary to obtain
a value that closely approximates the actual travel distance.

Therefore, we developed a module to estimate the travel distance called
the BoundaryCenterPathLengthEstimator module. The BoundaryCenterPath-
LengthEstimator module calculates the distance between the center of the en-
tity that serves as the starting point, the midpoint of the boundary line between

RoboCupRescue 2023 TDP Agent Simulation AIT-Rescue (Japan) 13

entities, and the center of the entity that serves as the endpoint of the path. We
obtained this list of entities from the pathfinding algorithm.

We used this module in the TwoOpt module to reference the distances be-
tween buildings when calculating the search order of buildings for the agent.

4 Strategies

4.1 Ambulance Team

Starting with the 2021 RoboCup, a bed set was added to the refuge. Ambulance
Teams need to transport civilians to refuge with available beds. Therefore, the
choice of refuge is important.

Communication with the command center To obtain information on the
refuges, the Ambulance Team must perceive the refuges or receive information
on the refuge from the command center. Therefore, ambulance teams do not
always store new information on refuges.

When the Ambulance Team starts transporting a civilian, it compares the in-
formation it receives about the refuge with the most recent information about the
refuge. The command center stores new information on all refuges and compares
the information received with the most recent information for those refuges. If
the number of available beds in a refuge is different, information on other op-
timal refuges is sent to that ambulance team. The Ambulance Team changes
the designated transportation refuge when the optimal refuge designated by the
command center differs from the refuge recommended for transportation.

Selection of transports targets considering agent’s movement speed
The Ambulance Team priotize the lives that can be saved as much as possible.
Therefore, when a civilian that needs to be transported is found, Eq. (5) is used
to determine whether or not transport is possible.

agentToCivilian represents the straight-line distance from the current loca-
tion to the target civilian. Similaryly, civilianToRefuge represents the straight-
line distance from the target civilian to the nearest refuge. Additionally,
agentAveMove is a parameter that represents the average speed of the agent
movement. In the experiment, we determined the value of the agent movement
speed and found that the average value was 40, 000. Therefore, the value of
agentAveMove should be set to 40, 000. Moreover, LEX represents the survival
time of a civilian.

agentToCivilian ` civilianToRefuge

agentAvgMove
ă LEX (5)

4.2 Fire Brigade

The Fire Brigade is responsible for rescuing buried civilians and making them
ready for transport by the Ambulance Team. In addition, to prioritize the lives

14 Haruki Uehara et al.

that can be saved as much as possible, it is important to select rescue targets
considering the civilian’s survival time, rescue time, and distance to the refuge.

Rescue target selection considering the agent’s movement speed When
the Fire Brigade finds a civilian who is buried, they use Eq. (6) to determine
whether or not to rescue them. Eq. (7) represents the rescue time for a civil-
ian. Futhermore, fbNumbers represents the number of fire brigades involved in
rescuing the civilians in question.

agentToCivilian ` civilianToRefuge

agentAvgMove
` rescueT ime ă LEX (6)

rescueT ime “
buriedness

fbNumbers
(7)

4.3 Police Force

The police force is responsible for clearing debris from a blocked road and al-
lowing other agents to move along the calculated path. It’s also responsible for
clearing the debris if other agents and citizens are buried in debris.

There are two main ways to clear debris. One is to remove the debris in a
rectangular shape and the other is to remove the debris by shrinking the debris.
The method of removing the debris in a rectangular shape can be efficiently
removed when the specific road or building is blocked by debris. On the other
hand, in the method of removing the debris by shrinking the debris, the de-
bris shrinks toward the center point and eventually disappears. Since no debris
remains on the road, agents can move smoothly.

Until now, the debris was basically removed using the method of removing the
debris in a rectangular shape, and only when the police force itself was buried,
the debris was removed using the method of removing the debris by shrinking
the debris. The police force itself only removed debris by shrinking the debris
when it was buried. However, when the debris is large, the method of removing
the debris by shrinking the debris takes a long time to remove the debris, and
the agent may die. Therefore, the number of steps required to remove the debris
is calculated from the RepairCost of the debris and the ClearRepairRate of the
agent. If the number of steps is long, the debris is removed using the method
of removing the debris in a rectangular shape. If the number of steps is short,
the debris is removed using the method of removing the debris by shrinking the
debris.

5 Preliminary Results

We conducted comparison experiments using our agent from last year to examine
the effectiveness of AIT-Rescue 2023. We used scenarios from the final round
scenarios of RoboCup 2022. The experimental results are shown in Table 2.

RoboCupRescue 2023 TDP Agent Simulation AIT-Rescue (Japan) 15

Table 2: Experimental results for AIT-Rescue 2022 and AIT-Rescue 2023

Scenario
Team

AIT-Rescue 2022 AIT-Rescue 2023

kobe2 128.386 129.050
paris2 27.862 28.421
berlin2 8.147 7.995
vc2 43.875 45.624
sydney1 15.112 14.715
ny1 19.666 18.679
montreal1 48.397 47.487
eindhoven1 12.003 11.985
istanbul1 43.538 43.325
sf1 38.173 38.718

The experimental results show that our improved agent achieved a higher
score than our agent from last year in 4 out of 10 scenarios. Additionally, the
scores improved substantially for kobe2 and vc2. kobe2 and vc2 are small map
sizes. Therefore, we believe that our agents performed effectively in scenarios in
which the time required for agent movement was small. By contrast, the maps
with significantly reduced scores were Sydney1 and montreal1, which were large
maps. This may be because our implementation of TwoOpt did not account for
debris on the road.

Thus, we consider that the modules and strategies that we described in this
TDP worked effectively in RRS.

6 Conclusions

In this study, we modeled the RRS task assignment problem as an L-DCOP.
Then we compared rescue activities modeled using the conventional DCOP and
those modeled using the L-DCOP. As a result, we confirmed that the rescue
activities modeled using the L-DCOP were more efficient than those modeled
using the DCOP. However, this algorithm cannot be used in competition yet
because it requires an ADF extended environment [4].

Therefore, we used the agent’s travel distance estimation used in the L-DCOP
experiment. We also improved the agent’s search order method, which we had
not focused on previously. This improved the agent’s search efficiency and the
accuracy of travel distance estimation. Using this implementation, we succeeded
in surpassing our agent’s score from last year in 4 out of 10 disaster scenarios.

We will improve the clustering of the agents’ search ranges before RoboCup
2023. Current clustering divides entities so that the number of agents equals
the number of clusters. However, in some scenarios, using a smaller number
of divisions may allow for more efficient rescue operations. Therefore, we will
implement a module to determine the number of divisions according to the
scenario.

16 Haruki Uehara et al.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP17K00317 and
JP21K12039; and the Kayamori Foundation of Information Science Advance-
ment.

References

1. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization prob-
lems and applications: A survey. CoRR abs/1602.06347 (2016), http://dblp.
uni-trier.de/db/journals/corr/corr1602.html#FiorettoP016

2. Hiroya, S., Akira, H., Haruki, U., Joe, F., Itsuki, M., Ryoya, M., Yuki, S., Iwata, K.,
Ito, N.: RoboCupRescue 2022 TDP Agent Simulation AIT-Rescue (Japan) (2022)

3. Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B.: The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization. Wiley (January 1991)

4. Miyamoto, Y., Kusaka, T., Okado, Y., Iwata, K., Ito, N.: RoboCupRescue 2019
TDP Infrastructure AIT-Rescue (Japan) (2019)

http://dblp.uni-trier.de/db/journals/corr/corr1602.html#FiorettoP016
http://dblp.uni-trier.de/db/journals/corr/corr1602.html#FiorettoP016

	RoboCupRescue 2023 TDP Agent Simulation AIT-Rescue (Japan)

