
RoboCupRescue 2024
TDP Infrastructure AIT-Rescue (Japan)

Haruki Uehara1, Yuki Shimada1, Keisuke Ando1, Takeshi Uchitane1, Kazunori
Iwata2, and Nobuhiro Ito1

1Department of Information Science, Aichi Institute of Technology, Japan
2Department of Business Administration, Aichi University, Japan

Abstract. In recent years, development and research using Python has
been increasing. This may be due to Python’s low learning curve and its
rich library of algorithms and machine learning tools. The Agent Devel-
opment Framework (ADF) used for agent development in RoboCupRes-
cue Simulation (RRS) currently supports only Java, which poses a chal-
lenge for newcomers unfamiliar with the Java language. Additionally,
Python boasts more extensive libraries in the fields of data science and
machine learning than Java, and its development community is more
active, making it possible to develop more efficient rescue agents. There-
fore, we have designed and developed a prototype of the ADF for Python
to lower the entry barrier for new developers in the RRS agent field and
to facilitate the development of more efficient rescue agents.

1 Introduction

In RoboCup, development and research using Python have been increasing in
recent years. For example, in RoboCupSoccer Simulation 2D (RSS2D), Zare et al.
developed a Python-based framework called Pyrus [6]. The base code of RSS2D
has been developed mostly in C++, and its complex syntax makes it difficult to
use, especially for beginners. Therefore, Zare et al. developed Pyrus to abstract
complex functionality and enable the use of Python’s machine learning libraries,
allowing Python developers to focus on high-level strategy development.

In RoboCupRescue Simulation (RRS), Goyal et al. developed an agent that
aims to optimize the cooperative behavior of multiple agents using deep re-
inforcement learning [1]．The RRS agent environment, written in Java, and
the deep learning module, developed in Python, are designed to communicate
with each other. Specifically, using data format sharing via Protocol Buffers and
communication via gRPC, Java-implemented agents and Python-implemented
deep reinforcement learning modules work together to learn optimal behavior.
This optimal behavior is learned through the collaboration between the Java-
implemented agent and the Python-implemented deep reinforcement learning
module.

The following features of Python are considered to be the reasons for the
aforementioned needs.



2 Haruki Uehara et al.

– Easy to learn
Python has a straightforward syntax, making it accessible for beginners. This
lowers the barrier for newcomers to engage in research and development.

– The rich ecosystem of libraries for machine learning and data science
Python boasts a comprehensive collection of libraries and frameworks essen-
tial for machine learning, such as Numpy, Pandas, and scikit-learn. Addi-
tionally, user-friendly libraries such as scikit-learn and Keras facilitate the
application of algorithms and machine learning concepts, even for those with
limited expertise in algorithms and machine learning. This fosters broader
development and research in algorithms and machine learning.

– Well-documented
Python and its libraries are extensively documented through numerous re-
sources and books. This reduces the learning curve for new entrants, enabling
efficient program development.

Currently, the Agent Development Framework (ADF) is used for agent devel-
opment in RRS. However, ADF only supports Java, complicates entry for devel-
opers interested in using other languages within the RRS community. Moreover,
Java offers a smaller selection of algorithms and machine learning libraries com-
pared to Python. Integrating Python libraries presents a challenge as it requires
developers to establish a data-sharing mechanism between Java and Python.
Therefore, there is a current necessity to set up a development environment
that accommodates Python in RRS agent development. In response, this study
aims to design an agent development framework compatible with Python and
developed a prototype.

2 Overview of ADF

First, the ADF used in the current agent development is described.
Initially introduced as Agent Development Framework Version1 (ADFv1)

by Takayanagi et al. in 2015 [2], it aimed to address issues stemming from re-
searchers using disparate code designs. Prior to ADFv1, each researcher de-
veloped agents independently, using their own code design, which resulted in
difficulties in sharing source code and algorithms. Moreover, documentation was
often lacking, requiring time-consuming efforts to decipher complex code. This
high threshold hindered new entrants and complicated research in RRS. ADFv1
attempted to mitigate these challenges by providing a manual, template pack-
age, and build tool, thereby easing the burden of agent program development
and code sharing. However, there is a practical issue with the document-sharing
method. Additionally, there were challenges such as not supporting precompu-
tation, inadequate algorithm organization, and lack of unified communication
modules.

Then, Takami et al. published ADF Version 2 (ADFv2) in 2016 [5]. ADFv2
addresses the shortcomings of ADFv1. Firstly, regarding document-sharing meth-
ods, ADFv1 used pdf while ADFv2 employs MediaWiki. This shift allows eas-
ier collaboration among developers, enhancing documentation quality. Secondly,



RoboCupRescue 2024 TDP Infrastructure AIT-Rescue (Japan) 3

regarding the issue of precomputation, ADFv2 introduces the following modes:
No precomputation mode, precomputation execution mode, and precomputation
complete mode. Thirdly, to address insufficient algorithm organization, ADFv2
divides algorithms into modules, facilitating easier inheritance and portability..
This modular approach also supports targeted algorithm development. Finally,
ADFv2 modularizes the Communication Library (CommLib) to unify commu-
nication modules, making it easier to change communication modules.

3 Purpose and design

3.1 Purpose

As outlined in Chapter 1, there is an increasing demand for Python. The current
ADF is supported only by Java; hence, there is a necessity for an ADF for Python
(ADF-Python). The specific objectives of developing ADF-Python are:

– Lowering the barrier for new entrants
By leveraging Python’s ease of learning, newcomers can develop agents using
only Python knowledge, thereby reducing the threshold for entry into agent
development.

– Utilization of Python libraries
Harness Python’s extensive libraries for algorithms and machine learning to
develop agents capable of more efficient rescue operations.

– Integration with existing Java code assets
Facilitate the reuse of existing Java source code, leveraging previous assets
and eliminating the need to rewrite code from Java to Python.

In addition to the aforementioned objectives, to ensure the framework’s
continuity and practicality, we aim to meet the following criteria.

– Ease of maintenance
High maintenance costs require significant manpower and time, potentially
hindering continuous provision of ADF-Python to new entrants By reducing
the maintenance costs, we alleviate operational burdens and enable sustain-
able long-term maintenance.

– Comparable performance to current ADF
If ADF-Python’s performance is reduced compared to the current ADF,
existing developers may face compatibility issues and increased hardware
requirements, raising entry barriers for new users. Therefore, eliminating
performance differences between the current ADF and ADF-Python, ensures
compatibility with existing hardware specifications.

3.2 Design of the framework

We designed ADF-Python based on the objectives and conditions described in
Section 3.1. The design diagram of ADF-Python is illustrated in Fig. 1.



4 Haruki Uehara et al.

ADF-Python

adf-core-python
(for Java)

adf-core-python
(for Python)

connect
Gateway

Send variables/results

Gateway

adf-sample-agent-java adf-sample-agent-python

rcrs-server

inheritance

load the modules

adf-core-java

Send variables/results

ModulesModules

Agent
Developers

Develop

Modules

connect

ModulesModulesModules

ModulesModules
Wrapper Classes
(of Java Modules)

Fig. 1: Design diagram of ADF-Python

We have designed ADF-Python to function as a wrapper library for the cur-
rent ADF. In addition to enabling agent development using Python, as outlined
in Section 3.1, there is also a requirement to leverage existing Java source code
assets. To meet this requirement, the adf-core-java [4] or Java modules devel-
oped by individual developers are accessible to Python-using agent developers
through the wrapper class. This approach allows for the utilization of existing
Java source code and maximizes the effectiveness of past assets. Moreover, by
using existing Java source code such as adf-sample-agent-java [3] and adf-core-
java, there is no need to rewrite all the programs required for agent execution
in Python, thereby reducing maintenance costs.

Adf-core-python serves as a data-sharing and wrapper library for adf-core-
java, featuring separate libraries for Java and Python. Each library includes a
Gateway class responsible for facilitating bi-directional data communication be-
tween Java and Python modules. This Gateway class interfaces with the Python
wrapper class, enabling seamless data exchange between the two environments.

The processing procedure of ADF-Python is outlined below.

1. Adf-core-java in adf-sample-agent-java calls Modules specified in the config
file．

2. Each Module invokes the Gateway class from adf-core-python (for Java), the
Java library for adf-core-python, and sends necessary information, such as
values and function names to the Gateway class from adf-core-python (for
Python), the Python library for ADF-Python.

3. The Gateway class from adf-core-python (for Python) receives values, func-
tions, etc. and forwards them to respective wrapper classes.

4. Each Module in adf-sample-agent-python inherits the wrapper class from
adf-core-python and performs operations.

5. Optionally, each Module in adf-sample-agent-python returns a result value
to corresponding Module in adf-core-java through a wrapper class．



RoboCupRescue 2024 TDP Infrastructure AIT-Rescue (Japan) 5

6. Repeat from 2 until the simulation concludes.

In 4, the Python-side processing is separated into concrete classes within
the wrapper class and adf-sample-agent-python. This separation ensures that
changes to the Gateway class or the adf-core-java class only require modifica-
tion to the wrapper class code, minimizing the impact on the concrete classes
within adf-sample-agent-python. Additionally, by providing an abstract inter-
face in wrapper class, modules in adf-sample-agent-java and adf-core-java can
be easily managed, effectively lowering the threshold for agent development.

4 Implementation of the prototype

Based on Section 3.2, we developed a prototype of ADF-Python to verify its
feasibility as a wrapper library for ADF-Java. A diagram of the ADF-Python
prototype is depicted in Fig. 2.

adf-core-java

adf-sample-agent-python

Gateway
Call

the function
Server

Return
the result

Client

Return
the result

SampleHumanDetector

constructor(AgentInfo,...)
resume(PrecomputeData)

preparate()
precompute()

updateInfo(MessageManager)
calc()

getTarget()

Gateway

Return
the result Server

Send
the data

Client

DefaultPythonHumanDetector

constructor(AgentInfo,...)
resume(PrecomputeData)

preparate()
precompute()

updateInfo(MessageManager)
calc()

getTarget()

Load the module

DefaultTacticsAmbulanceTeam

Call the function

ConnectorAmbulanceTeam

Call the function

AgentLauncher

Call
the function

adf-core-python
(Java Library)

adf-core-python
(Python Library)

Fig. 2: ADF-Python prototype configuration diagram

In this prototype we have implemented only the HumanDetector for Ambu-
lanceTeam. This decision was made because the HumanDetector program di-
rectly influences the agent’s behavior, allowing for straightforward evaluation of
its intended functionality. The communication protocol chosen is gRPC, and the
data format utilized is Protocol Buffers. These were selected for their ability to
facilitate communication across different programing languages and to handle
complex data types, which are essential for the representing a wide variety of
RRS data.

Data exchange between Java and Python follows a client-server model. Within
adf-core-python, the Gateway package includes the Client and Server classes.
The Client class sends necessary information to the Server class, enabling data
reception and function execution.

The procedure for initializing HumanDetector in the prototype ADF-Python
is shown below:



6 Haruki Uehara et al.

1. When the agent program starts, an instance of the Server class from the
Gateway package is created and started.

2. DefaultTacticsAmbulanceTeam creates instances of DefaultPythonHuman-
Detector.

3. During the execution of the constructor of DefaultPythonHumanDetector,
an instance of the Client class from the Gateway package is created.

4. Once the Client instance is initialized, it retrieves the constructor arguments
from DefaultPythonHumanDetector.

5. The obtained argument data is serialized using Protocol Buffers.
6. The serialized data is sent to an instance of the Server class in the Python

library adf-core-python.
7. The Server instance deserializes the submitted data.
8. The Server instance instantiates the SampleHumanDetector class from adf-

sample-agent-python and assigns the deserialized data from step 7 as argu-
ments to the constructor.

Next, the processing during the simulation of HumanDetector in the proto-
type ADF-Python is described. In DefaultPythonHumanDetecotr, the following
functions are called by DefaultTacticsAmbulanceTeam at any steps during the
simulation.

– precompute function
Functions performed when simulation is in precompute mode

– preparate function
Functions performed when the simulation is not in precompute mode

– resume function
Function to get the result data of the precompute function executed
in the precompute mode

– updateInfo function
Function that retrieves information such as the message from the
previous step

– calc function
Function to select citizens to transport

– getTarget function
Function that returns the result of the calc function

In this prototype of ADF-Python, when each function is executed, the corre-
sponding function within the Python instance is invoked, and the process defined
within each function is executed.

The Java and Python instances are assigned the same ID, as illustrated in
Fig. 3. These IDs are generated during the initialization of the Java-side Human-
Detector and are shared with the corresponding Python-side HumanDetector.
When a Java instance calls a Python instance, such as the precompute or calc
function, only the Python instance assigned the same ID as the Java instance
will execute. Therefore, even if multiple Java instances are generated, only the
Python instance with the matching ID will execute.



RoboCupRescue 2024 TDP Infrastructure AIT-Rescue (Japan) 7

Java

HumanDetector
Instance No.1

ID : b7a69c24-1206

precompute()

calc()

...

Python

HumanDetector
Instance No.1

ID : b7a69c24-1206

precompute()

calc()

...

① Connect

・
・

・

・
・

・

③ Return

② Call

Fig. 3: Synchronizing Java and Python Instances

5 Evaluation and consideration

In this chapter, we verify that the agent implemented based on the design de-
scribed in Chapter 4 is operational. Additionally, we compare its performance
and implementation with ADF-Java. ADF-Python only implemented the Ambu-
lanceTeam’s HumanDetector by Python, and its processing procedure mirrored
that of ADF-Java. The Cluster module, called as an external module within Hu-

manDetector, remains implemented in Java. For comparison with ADF-Python,
we used adf-sample-agent-java for ADF-Java. The simulation was performed us-
ing the computer configuration listed in Table 1

Table 1: Computer configuration used in this experiment
Operating System Ubuntu 22.04.4 LTS
Processor Intel(R) Core(TM) i9-14900K (24 Cores and 32 Threads)
Memory 128 GB

In addition, the scenarios in Table 2 were used in the experiments.



8 Haruki Uehara et al.

Table 2: Scenarios used in the experiment

Map Area(km2)
Number

of buildings
Number
of roads

Existence
of blockades

Number
of AT

Number
of FB

Number
of PF

Algiers 1.7 430 1867 Yes 25 40 25
Berlin 3.3 1426 3385 Yes 50 35 35
Eindhoven 3.0 1308 5172 Yes 30 40 40
Istanbul 1.5 1244 3337 Yes 15 30 30
Joao 1.0 879 3467 Yes 30 35 15
Paris 1.0 1618 3025 Yes 28 46 10
Sakae 1.7 626 1182 No 25 0 0
SF 1.0 815 2720 Yes 17 30 37
VC 0.3 1263 1954 No 20 30 0
Vernon 1.5 760 1281 Yes 30 40 25

Initially, we used the scenarios listed in Table 2 to validate the consistency
of agent behavior between ADF-Java and ADF-Python. Across all maps, the
actions of each agent remained consistent. For example, Fig. 4 displays the travel
paths of a specific AmbulanceTeam in Vernon. It is evident from Fig. 4 that the
travel paths generated by both ADF-Java and ADF-Python exhibit consistency.

Start

End

ADF-Java
ADF-Python

Fig. 4: The travel paths of a certain AmbulanceTeam in Vernon

We also compared the score evolution between ADF-Java and ADF-Python
using the scenarios in Table 2. The results indicate consistent scores across all
maps and each step. For instance, Fig.5 illustrates the score progression of ADF-



RoboCupRescue 2024 TDP Infrastructure AIT-Rescue (Japan) 9

Java and ADF-Python in Paris. As shown in Fig.5, the score transitions between
ADF-Java and ADF-Python are identical.

0 50 100 150 200 250 300
Step

50

100

150

200

250

Sc
or

e

ADF-Java
ADF-Python

Fig. 5: The score transition between ADF-Java and ADF-Python in Paris

From this, it was confirmed that ADF-Python can reproduce the behavior of
agents by writing the same algorithm as ADF-Java in Python.

Next, we compared the CPU and memory usage during the simulation of
ADF-Java and ADF-Python. Table 3 and Table 4 show the CPU and memory
usage of ADF-Java and ADF-Python in each scenario, respectively.

Table 3: Average CPU usage for ADF-Java and ADF-Python

Scenario
Agent

ADF-Java (%) ADF-Python (%)

Algiers 8.04 10.97
Berlin 20.83 26.13
Eindhoven 16.32 19.94
Istanbul 11.96 17.43
Joao 16.01 22.41
Paris 15.69 21.88
Sakae 3.04 6.78
SF 13.96 17.88
VC 6.27 17.33
Vernon 8.62 11.56



10 Haruki Uehara et al.

Table 4: Average Memory Usage for ADF-Java and ADF-Python

Scenario
Agent

ADF-Java (MB) ADF-Python (MB)

Algiers 9304.33 4021.31
Berlin 11077.70 9511.84
Eindhoven 11631.79 10220.95
Istanbul 9784.32 6246.05
Joao 10130.72 5912.14
Paris 9139.03 7521.18
Sakae 3188.70 1841.93
SF 9527.85 5227.68
VC 6457.22 3853.04
Vernon 9881.41 4695.84

First, comparing the CPU usage of ADF-Java and ADF-Python in each
scenario, we observe that ADF-Python’s CPU usage is higher than that of ADF-
Java. As an example, Fig. 6 shows the CPU usage of ADF-Java and ADF-Python
in Vernon. The orange line represents ADF-Java CPU usage, and the blue line
represents ADF-Python CPU usage. Note that we have omitted the first 50 s
after the agent’s launch, as the values are high. As shown in Fig. 6, ADF-Python
exhibits higher CPU usage compared to ADF-Java.

50 250 500 750 1000 1250 1500 1750
Time(Seconds)

0

20

40

60

80

100

120

140

160

CP
U 

Us
ag

e(
%

)

ADF-Python
ADF-Java

Fig. 6: ADF-Java and ADF-Python CPU usage in Vernon



RoboCupRescue 2024 TDP Infrastructure AIT-Rescue (Japan) 11

This increased CPU usage in ADF-Python is attributed to the simultaneous
execution of Java and Python programs.

Next, we compare the memory usage of ADF-Java and ADF-Python in each
scenario and find that ADF-Python uses less memory than ADF-Java. For exam-
ple, Fig. 7 shows the memory usage of ADF-Java and ADF-Python in Vernon.
The orange line represents the memory usage of ADF-Java, and the blue line
represents the memory usage of ADF-Python. Note that we omitted the 50 s af-
ter the agent’s launch, as the values are high. As shown in Fig. 7, ADF-Python
demonstrates lower memory usage compared to ADF-Java.

50 250 500 750 1000 1250 1500 1750
Time(Seconds)

0

2000

4000

6000

8000

10000

M
em

or
y 

Us
ag

e(
M

B)

ADF-Python
ADF-Java

Fig. 7: ADF-Java and ADF-Python memory usage on Vernon

We believe that Java’s memory management is the cause of these differences.
When an object is created in Java, the memory heap size that the object will
use is predicted and reserved. Consequently, more memory heap size might be
reserved than the object actually requires. In contrast, Python dynamically re-
serves memory heap size as needed, resulting in lower memory usage than Java.

Fig. 8 and Fig. 9 illustrate these differences. Fig. 8 shows the memory heap
size and actual heap size used by ADF-Java in Vernon. Fig. 9 presents the
memory heap size and actual heap size used by Java running on ADF-Python
in Vernon.



12 Haruki Uehara et al.

0 200 400 600 800 1000 1200 1400 1600
Time(Seconds)

0

2000

4000

6000

8000

10000

12000

14000

Si
ze

(M
B)

Used Heap Size
Heap Size

Fig. 8: Heap size for ADF-Java in Vernon

0 250 500 750 1000 1250 1500 1750
Time(Seconds)

0

2000

4000

6000

8000

10000

12000

14000

Si
ze

(M
B)

Used Heap Size
Heap Size

Fig. 9: Heap size used for Java running on ADF-Python in Vernon

In the figures, the orange line shows the maximum memory heap size, and the
blue line shows the actual used heap size. We can see that the maximum memory



RoboCupRescue 2024 TDP Infrastructure AIT-Rescue (Japan) 13

heap size of ADF-Java’s adf-sample-agent-java is approximately 10 GB, and the
actual heap size used is approximately 6 GB. On the other hand, the maximum
heap size of adf-sample-agent-java running on ADF-Python is approximately 4
GB, and the actual heap size used is approximately 3 GB.

This demonstrates that agents written partly in Python use less memory
than agents written entirely in Java.

6 Conclusions

In this paper, we identified the problems with the current RRS agents and de-
signed and developed the Agent Development Framework for Python, success-
fully achieving the integration of Java and Python as outlined in our objectives.
The prototype demonstrated that ADF-Python can effectively run agents with
components written in both languages, as evidenced by the functional Human-
Detector for the AmbulanceTeam. This successful integration implies that ADF-
Python can leverage Python’s ease of use and dynamic memory management,
potentially lowering the barrier for new developers and enhancing performance.
However, the current state, where only the HumanDetector is written in Python
while other agents remain in Java, highlights the transitional nature of our work.
Full implementation of all agents in Python is a necessary next step. Future re-
search will focus on developing comprehensive Python implementations for all
agent algorithms, further enhancing the framework’s functionality, and conduct-
ing thorough performance evaluations. By addressing these aspects, we aim to
provide a robust and efficient tool for agent developers, ultimately facilitating
the broader adoption and utility of ADF-Python in RRS agent development.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP17K00317,
JP21K12039, and JP23K11225; and the Kayamori Foundation of Information
Science Advancement.

References

1. Goyal, A.: Multi-Agent Deep Reinforcement Learning for RoboCup Rescue Sim-
ulator. Master’s thesis, The University of Texas at Austin (2020), https://

repositories.lib.utexas.edu/items/55eb34d2-5029-4798-98fe-d9aae83249c3

2. Kazuo, T., Shunki, T., Yoshiyuki, K., Nobuhiro, I.: Robocup rescue simulation 新
規参入者のためのエージェントフレームワーク について. 人工知能学会全国大会論文集
JSAI2015(0), 2B5NFC02c2–2B5NFC02c2 (2015), https://cir.nii.ac.jp/crid/
1390564238001456000

3. roborescue: adf-sample-agent-java. https://github.com/roborescue/

adf-sample-agent-java (2016), accessed at 05/10/2024
4. roborescue: adf-core-java. https://github.com/roborescue/adf-core-java

(2017), accessed at 05/10/2024

https://repositories.lib.utexas.edu/items/55eb34d2-5029-4798-98fe-d9aae83249c3
https://repositories.lib.utexas.edu/items/55eb34d2-5029-4798-98fe-d9aae83249c3
https://cir.nii.ac.jp/crid/1390564238001456000
https://cir.nii.ac.jp/crid/1390564238001456000
https://github.com/roborescue/adf-sample-agent-java
https://github.com/roborescue/adf-sample-agent-java
https://github.com/roborescue/adf-core-java


14 Haruki Uehara et al.

5. Shunki, T., Kazuo, T., Yoshiyuki, K., Nobuhiro, I.: モジュール構造を用いた災害救助
研究プラットフォームの提案.人工知能学会全国大会論文集 JSAI2016(0), 1I2NFC013–
1I2NFC013 (2016), https://cir.nii.ac.jp/crid/1390001288047294080

6. Zare, N., Sayareh, A., Amini, O., Sarvmaili, M., Firouzkouhi, A., Matwin, S., Soares,
A.: Pyrus base: An open source python framework for the robocup 2d soccer simu-
lation (2023)

https://cir.nii.ac.jp/crid/1390001288047294080

	RoboCupRescue 2024 TDP Infrastructure AIT-Rescue (Japan)

