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Intfroduction

> Natural disasters are major adverse
events

» Natural disasters impact  the
infrastructure and environment of
the affected areas causing

O loss of shelter
O food shortage

O spread of infectious diseases

> Effective monitoring for immediate
post disaster response help reduce

QO economic losses

a fatalities

Source: National Geographic Source: TiplopTlens
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Number of natural disasters in China in 2018

22

Share of fatalities from natural disasters in Asia
in 2018

79.8%

Share of natural disaster cost in the Americas

53 %

Type of natural disaster with most victims in
2018 - floods

34.2 million people

Most frequent type of natural disaster in 2018 -
Flood

127

Cost of damages of storms in 2018
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Intfroduction

» Models based on semantic analysis

of real-time data extracted from
social networks

Q sources unreliable

O data scarce

> Satellite images can assist in real-

time with
O detecting disaster affected areas

O Identifying evacuation routes
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Objectives

> Investigate to what extend satellite images can be used to help
evacuation of people in a disaster affected area

» Propose a model detects and classifies the severity of disaster affected
areas on satellite images and recommend the safest and shortest
evacuation route to arescue shelter
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Segmentation Model

> ldentifies buildings from the satellite images by classifying each pixel into
either a building or a background

> Based on the U-Net Architecture (Ronneberger et al., 2015)

» Consist of contfraction path and expansive path

Segmentation Model
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Classification Model

» Classify buildings into
O no-damage, minor-damage, major-damage, destroyed

» Based on ResNet50 Architecture (He et al., 2016)
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Route Detection Model

» |ldentify the shortest and safest route to a rescue shelter
» Based on Dijkstra’s algorithm (Dijkstra, 1959)

» Rescue shelteris a hospital in the radius of 5 km

Route Detection Model
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Technologies
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Evaluation

> Experiment 1: Segmentation Model
O Compare with Building Footprint Extraction (Pasquali et al., 2019)

O Use Fl-score and Intersection Over Union (IOU)

> Experiment 2: Classification Model
O Compare with VGG16 and VGGI19 models (Simonyan & Zisserman, 2015)

O Use Fl-score, Precision and Recall

> Experiment 3: Route Detection Model
O Real-time data update

O Capacity to adapt the evacuation route dynamically
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XBD Dataset

» Pre-disaster and post-disaster high-resolution satellite imagery (Gupta et
al., 2019)

» Contains 850,000 building polygons from six different types of natural
disaster around the world, covering a total area of over 45,000 square
kilometers

> Licensed under the Creative Commons Attribution-Noncommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0) license

Undisturbed. No sign of water, structural damage,
0 No damage shingle damage, or burn marks.

Building partially burnt, water surrounding the
structure, volcanic flow nearby, roof elements
1 Minor damage  missing, or visible cracks.

Partial wall or roof collapse, encroaching volcanic
flow, or the structure is surrounded by water or
2 Major damage mud.
Structure is scorched, completely collapsed,
partially or completely covered with water or mud,
3 Destroyed or no longer present. 16




Segmentation Model

“Wodel | Fiscoe | o0

Building Fooftprint

Extraction 0.79 0.68
Segmentation
Model 0.84 0.73

> Wilcoxon Rank Sum Test
Q p-value = 0.003383

> Rejects the null hypothesis with significance 0.05

a IOU is greater than the Building Footprint Extract model
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Classification Model

~“Model | Fi-score | Recall | _precision _

VGGI16 0.71 0.67 0.82

VGGI19 0.73 0.69 0.80

Classification

Model 0.81 0.74 0.83

» Classification Model Fl-score improves compared to VGG network
models

» Classification Model is more balanced compared to VGG network
models
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Route Detection Model

Before disaster data update After disaster data update
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Conclusions

» Propose an Evacuation Route Model that uses satellite images to
recommend the safest and shortest route to a rescue shelter

» The Evacuation Route Model is comprised of

QO The Segmentation model is 5% more accurate than the Building Footprint
Extraction model

Q The Classification model is 8% and 10% more accurate than the VGG16
model and VGG19 models respectively

O The Route Detection Model can dynamically adapt the safest and shortest
route path to the rescue shelter due to the update of satellite images
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Future Works

» Detect and classify the condition of roads in addition to buildings on
satellite images

> Use A* instead of Dijkstra’s algorithm

» Compare the Evacuation Route Model against other similar frameworks
instead of their individual components

> Integration with post-disaster resource allocation systems

» Study the Ethical implications of these types of systems

21



References

Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematlk 1, 269-271. doi:
10.1007/BF01386390

Gupta, R., Hosfelt, R., Sajeeyv, S., Patel, N., Goodman, B., Doshi, J., Heim, E., Choset, H., & Gaston, M. (2019). Creating
xBD: A dataset for assessing building damage from satellite imagery. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops. pp. 10-17. Montreal.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 770-778. Las Vegas, NV. doi: 10.1109/CVPR.2016.90

Pasquali, G., lannelli, G.C., & DellAqua, F. (2019). Building footprint extraction from multispectral, spaceborne earth
observation datasets using a structurally optimized U-Net convolutional neural network. Remote Sensing,11(23), 2803.
doi: 10.3390/rs11232803

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In:
Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention —
MICCAI 2015. MICCAI 2015, Lecture Notes in Computer Science, vol. 9351, pp. 81-93. Springer, Cham. doi: 10.1007/978-3-
319-24574-4 28

Simonyan, K. & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In
International Conference on Learning Representations, https://arxiv.org/abs/1409.1556

Zhang, C., Fan, C., Yao, W., Hu, X., & Mostafavi, A. (2019). Social media for intelligent public information and warning in
disasters: An interdisciplinary review. International Journal of Information Management, 49, 190-207. doi:
10.1016/].ijinforgt.2019.04.004

22



Thank Youll



